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Disclaimer

= This presentation is a survey of some
recent work in the UWB area applied to
implantable medical devices.

= My contribution is largely speculative,
namely, that physical layer UWB provides
a good match for the low-level security/
privacy requirements of a class of
implantable medical devices.

= There is still much work to be done...
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Outline

= Motivations
¢ Requirements of IMD communication
e Security and Privacy
o Data-rate (>100kbps)
« Range/Channel : BAN

« Asymmetric channel: ie lightweight device, heavy reader ( Active
RFID)

e Challenges

e Threat: Physical Layer Detection and Identification,
e Threat: Eavesdropping

 Power (battery-powered, harvested, or remote-powered device)
= A Possible UWB Solution (Ko and Goeckel, 2010)
= Related Work (timedomain.com, ETHZ, BWRC)
= Future Directions
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Wearable Medical BAN applications

Bio-Medical

Sports performance

EEG Electroencephalography
ECG Electrocardiogram

EMG Electromyography (muscular)
Blood pressure

Blood Sp0O2

Blood pH

Glucose sensor
Respiration

Temperature

Fall detection
Ocular/cochlear prosthesis
Digestive tract tracking
Digestive tract imaging

Distance

Speed

Posture (Body Position)
Sports training aid

Images courtesy CSEM , 2009
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Increasing data rates in IMDs

Example: Scaling of Data Rate vs. Array Size
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J. Rabaey et al, Powering and Communicating with mm-size Implants, DATE - Design, Automation and Test in Europe, 2011 5



JMassAmihe
Conflicting Design Goals in IMDs

Safety/Utility goals Security/Privacy goals

= Authorization (personal, role-

= Data access based, IMD selection)

= Data accuracy * Availability

= Device identification = Device software and settings
= Configurability = Device-existence privacy

» Updatable software = Device-type privacy

= Multi-device coordination ~ * Specific-device ID privacy

= Auditable = Measurement and Log Privacy
= Resource efficient = Bearer privacy

= Data integrity

From D. Halperin et al, “Security and Privacy for Implantable Medical Devices”, IEEE Pervasive Computing, 2008 6
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Encrypt the high data-rate uplink to prevent eavesdropping

Standard Decryption Algorithm n I I n n I I Standard Encryption Algorithm
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Idea: Use UWB to achieve physical layer security

Physical Layer Security
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Ultra-wideband Radio for Low Power Security

Original Motivation: Standard crypto algorithms (AES, etc.) can
be too power/energy consuming for RFID tags, especially passive
tags.

Idea: Can we save power by pushing some part of the cryptography
to the Physical Layer? Employ impulse-radio ultra-wideband to
“hide” the signal in the time-domain.

» Desired receiver (knows the key) can aggregate energy to perform
channel estimation (and eventually decode). (D. Goeckel)

» Eavesdropper suffers from (asymptotically infinite,) noncoherent
combining loss.

Questions:
1. Can we formulate a “hard” problem for the eavesdropper to solve?
(Ari Juels — RSA Labs, Dan Boneh — Stanford)
2. How does the power consumption compare to all-digital schemes?
(W. Burleson- digital, R. Jackson — analog/RF).
3. |s the scheme more side-channel tolerant? (W. Burleson and C. Paar).

Supported by NSF 0831133 CT-ER: Ultra-wideband Radio for Low-Power Security 9




J\V1assAmhe

Experiment with UWB schemes to optimize BER metrics
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M. Ko and D. Goeckel, “Wireless Physical-Layer Security Performance of UWB systems”, MILCOMM, 2010
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Keyed Time-referenced Impulse Radio UWB

b-bit secret key K

: . '
Determine the time b/m Determine the time
delay between the bits delay between the
reference and data reference and data
pulses in the initial pulses in the final
Nf/m frames Nf/m frames
1 ‘m—1 | | |
'— N, T ‘ N, T T =N,T
T,’ m £~ f m £~ f s a4
L
AV A
T,
| f
T D+ CO.[ kim IT:D
M. Ko and D. Goeckel, “Wireless Physical-Layer Security Performance of UWB systems”, MILCOMM, 2010 11
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Lightweight TRNG needed to confuse adversary.
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 Random offsets employed to prevent the adversary from detecting the

transmitted signal coherently
 Generated by a very fast and light True Random Number Generator (TRNG)

- S. Srinivasan, et al (Intel) “A 4Gbps 0.57pJ/bit Process-Voltage-Temperature Variation Tolerant All-Digital True

Random Number Generator in 45nm CMOS”, in Intl. Conf. on VLSI Design, 2009,
with secure calibration enhancements by V. Suresh and W. Burleson, HOST 2010.

* Intended receiver only knows key but does not need to know TRNGs

M. Ko and D. Goeckel, “Wireless Physical-Layer Security Performance of UWB systems”, MILCOMM, 2010 12
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Performance for Transmited Reference (TR) Reception

Intended Receiver
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Adversary Performance for TR Reception
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M. Ko and D. Goeckel, “Wireless Physical-Layer Security Performance of UWB systems”, MILCOMM, 2010 14
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Performance for TR Reception

Adversary Hypothesis Test
AT 2
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Performance for TR Reception

Adversary

The probability of finding the correct pulse positions in each group of N/m frames
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M. Ko and D. Goeckel, “Wireless Physical-Layer Security Performance of UWB systems”, MILCOMM, 2010 16
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Simulation assumptions

= Tested security performance of the intended receiver and the
adversary for both coherent and TR reception

= Considered two different environments, i.e., IEEE 802.15.4a LOS
office and LOS outdoor environments

= Assumed the received SNR is the same at both the intended
receivers and the adversaries (ignoring near-far problem)

= Used a 30-bit secret key by dividing it into 5 parts (/m=5)

= Considered a low-data rate application of 100 kbps

M. Ko and D. Goeckel, “Wireless Physical-Layer Security Performance of UWB systems”, MILCOMM, 2010 17
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Performance Comparison: Framed vs. Frameless
No limitation on key bits

Given sufficient secret key bits, assume N, =N, =% and consider integers satisfying
these relationships.
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Results from simulations

= Proposed low-power UWB signaling schemes to provide some level of
encryption at the physical layer when the transmission of signals is
intended for coherent reception and TR reception

= Suggested that the UWB TR systems outperform the coherent UWB
systems in terms of performance of the desired receiver versus that of
the adversary

=  Proposed a frameless signaling scheme when the transmission is
intended for coherent reception to offer enhanced physical layer security

= Suggested that frameless signaling schemes outperform framed signaling
schemes if there are the same number of pulses in one symbol period

20
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Comparison of UWB TR and coherent with dummy pulses.

Use excess power to produce dummy pulses in the coherent system
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Additional Benefits of UWB

= Harder to detect (timedomain.com)

= Harder to physically fingerprint (Danev et
al (ETHZ), Usenix 2009)

= Can be implemented as backscatter in a
purely passive tag by modulating reflected
pulse train (Berkeley Wireless Research
Center)

22
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Low probability of detection

Time Domain Corporation (TDC) proposes using an Ultra-
wideband (UWB) communication system to provide a reliable 30
km RF link between an unmanned aerial vehicle and a ground
station. Pseudo random flipped and time hopped codes provide a
whitened pulse train with very low power spectral density (PSD).
The PSD looks like Gaussian distributed noise to most
narrowband low noise detection systems and would be
very difficult to detect with wideband systems.
Timedomain.com

23
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Physical layer identification of wireless devices

« Signal processing and pattern recognition methods
allow very accurate identification of wireless devices
from analog radio behavior

« Power-up transient and other discriminants

« We conjecture that IR-UWB reduces these

vulnerabilities.
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Figure 6: Modulation shape of the responses of 4 different classes (C1),(C1-1D2),(C2),(JCOP): a) first run b) second
run. Ineach run, the sample transponders were freshly placed in the fingerprinting setup. These plots show the stability
of the collected modulation-shape features across different runs.

B. Daney, T. Heydt-Benjamin, S. Capkun., Physical-layer Identification of RFID Devices ,
USENIX Security Symposium, 2009. 24
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Reflective Impulse Radios (RIR)

reflection

B E?.;_/
=
* Combining
UWB and RFID.

Frequency

D. Chen, M. Mark, J. Rabaey, Berkeley Wireless Reserch Center, http://bwrc.eecs.berkeley.edu/php/pubs/
pubs.php/1054/BWRC_retreat_summer09.pdf 25
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UWB Receiver Implementation Issues

Energy of Pulse is Contained in Small Time Window

Time —

Only Need Limited Amount of Fast Sampling

Use Parallel Sampling Blocks

Have Rest of Time in Cycle to Process Samples

Do Digital Correlation

Minimum of Analog Blocks Run at Speed

Berkeley Wireless Research Center, bwrc.eecs.berkeley.edu/php/pubs/pubs.php/333.html 26
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Conclusions

= Security can be implemented at the physical layer through
impulse-based UWB providing low-power protection against:
 Eavesdropping
» Device detection
e Device identification
= UWB schemes transmitted reference vs. coherent and framed vs.
frameless were evaluated for different scenarios
= Future Directions:
« Implementation of UWB radio in small form factor and low energy
 Experiments on realistic MBAN channel
* More thorough security analysis including RF fingerprinting
« Extensions to allow passive back-scatter (RIR) tags

27
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Upcoming Event!

Spe&.akers. -Wprksho =
* Kevin Fu, UMass Amherst, USA T

« Srdjan Capkun, ETHZ, CH

 Jos Huiskens, IMEC, NL

« Ahmad Sadeghi, Darmstadt, DE
« Ian Brown, Oxford, GB

 F. Valgimigli, Metarini, IT

» A. Guiseppi-Elie, Clemson, USA
* Q. Tan, Shanghai, China

m

Panel : How real and urgent are
the security/privacy threats for
IMDs? Which IMDs?

fjust following IEEE
SMICT in nearby
Montreux, Switzerland,
www.ismict2011.org)

http:/ /si.epfl.ch/SPIMD 28
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Is this too novel, too late? Aren’t standards in place?

“Medical marches to a different cadence than most of the
electronics industry. Design cycles can stretch from three
to five years and cost $10-15 million, thanks to the lengthy
regulatory process. The product lifecycles can also extend
over a 20 year time span.”

Jon Knight, Boston Scientific
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