
An Automatic, Time-Based, Secure Pairing
Protocol for Passive RFID

G. T. Amariucai †, C. Bergman ∗ and Y. Guan †

† Dept. of Electrical and Comp. Engineering, Iowa State University,
gamari@iastate.edu, guan@iastate.edu

∗ Dept. of Mathematics, Iowa State University, cbergman@iastate.edu

Abstract. This paper introduces the Adopted-Pet (AP) protocol, an
automatic (i.e. requiring no human interaction) secure pairing protocol,
adequate for the pairing between a passive RFID tag and a reader. Most
pairing protocols rely for their security on a certain advantage that the
legitimate devices have over any malicious users. Such advantages include
proximity (employing near-field communication) or secret keys that are
either produced with the assistance of, or verified by, the legitimate user.
The advantage exploited by our novel AP protocol is the amount of un-
interrupted time spent by the two devices in the proximity (although not
requiring near-field communication) of each-other. We discuss several im-
plementation configurations, all based on pseudo-random bit generators,
employing short-length LFSRs, and requiring no more than 2000 tran-
sistors. This makes the protocol ideally suited for low-cost passive RFID
tags. For each configuration we show that the AP protocol is highly
secure against occasional malicious entities.

Keywords: Automatic pairing protocol, time-based pairing, passive RFID.

1 Introduction

Recent technological advances, combined with an increasing demand for auto-
matic inventory and tracking, provide a glimpse of a near future in which radio-
frequency identification (RFID) becomes ubiquitous. From industrial platforms
to home environments, from retail stores or restaurants to medical facilities, the
potential use of passive RFID tags is only limited by human imagination.

Passive RFID tags are small, barely-visible, extremely cheap and hence ex-
tremely resource-limited electronic devices, which can communicate wirelessly
to a more powerful device—a “reader”—usually during an automatic inventory.
The typical passive RFID tag has no internal power source, and runs its internal
circuitry by harvesting power from the electromagnetic waves produced by the
reader during a query. Rather than producing and transmitting an electromag-
netic wave of its own, the tag responds to queries from the reader by backscat-
tering [1], i.e. by modulating the waveform reflected back to the reader—this
can be done by varying the load impedance of the tag’s antenna.

1



Unfortunately, as with any relatively new technology, numerous controversies
still surround the wide-scale deployment of RFID. In fact, consumers’ fear of
privacy invasion have already triggered several small-scale street protests around
the world. Indeed, current RFID tags are subject to privacy attacks, which could
make it feasible to track the movements of a person (the same idea is non-
malevolently used to track patients in clinics or senior citizens in assisted-living
facilities), or to inventory their personal possessions.

As an immediate countermeasure, pairing algorithms could be implemented
to ensure that the RFID tags only respond to very few authenticated tag readers.
Although device pairing protocols abound in the literature [2–5], very few of
these protocols can be implemented into the cost-constrained, resource-limited
passive RFID tags. Moreover, most low-complexity pairing protocols require
human interaction to complete the pairing process. For example, the user is
required to shake the two devices simultaneously in [3], or to push a button in
[4, 5]. The Resurrecting Duckling Protocol of [2], requires that the new tag should
be “killed” by its previous owner and then “resurrected” by the new owner. The
“duckling” will then trust only the the first reader that attempts to communicate
with it during resurrection. The immediate drawback is that if the duckling is
accidentally “killed” and then “resurrected” by a malicious user, the legitimate
user looses access to the tag.

Human interaction is generally not desirable, because it is often viewed as an
additional burden on the consumer, who may disregard proper protocol, leading
to faulty pairings or omissions. In this paper, we are concerned with automatic
pairing that would provide commercial-level privacy for recently-introduced ap-
plications like smart refrigerators [6, 7], or smart wardrobes or bookshelves, which
periodically inventory their contents, and are able to provide suggestions like a
shopping list, a matched outfit, or the location of a book. We should note that,
while human interaction may be appropriate for the pairing of highly security-
sensitive devices, such as personal computers, users should not be expected to
perform dozens of check-in procedures after every trip to the grocery store, in
order to pair each item with their smart refrigerator or pantry.

We address the pairing between a passive RFID tag and a reader by proposing
an automatic, time-based pairing protocol, which we view as an alternative to the
Resurrecting Duckling protocol of [2], and which we denote the Adopted-Pet (AP)
Protocol. As opposed to the Resurrecting Duckling protocol, our Adopted Pet
Protocol provides a more natural method of secure and transient [2] association
between the tag and the reader in the home environment. Just as when adopting
a new pet from the animal shelter, in our protocol trust is earned by spending a
long, quality time together. Once brought into the home environment, the new
tag will start being courted by a home reader. After the tag and the reader spend
a pre-programmed amount of time together (usually overnight), the tag starts
trusting the reader, and responding to its queries.

The main advantage of our AP protocol is that it requires no human in-
teraction. Moreover, if the tag accidentally begins to trust another reader (for
example during a trip), the home reader can re-gain the tag’s trust upon return.

2



Naturally, this has the drawback that, if the item to which the RFID tag is at-
tached is stolen, the thief can use the tag with his own home readers. However,
we believe this should be irrelevant, since the value of the RFID-enabled service
is generally less than the intrinsic value of the object to which it is attached. In
addition, any sensible thief would attempt to remove the RFID tags from the
stolen products anyway, to destroy the evidence of the crime. Moreover, the se-
curity of most encrypted devices becomes questionable when the device is stolen,
because the thief has an unlimited time for breaking the encryption.

Our contributions can be summarized as follows: (a) we introduce the novel
idea of uninterrupted-time-based pairing, and define the adopted-pet (AP) pair-
ing protocol; (b) we provide a robust implementation philosophy, which can
tolerate interference and desynchronizations, and demands extremely limited
resources; (c) we discuss four possible implementations of the protocol inside
passive RFID tags, in detail, emphasizing their individual security features and
resource requirements; (d) we provide an analysis of the reader’s part of the
protocol. The paper is organized as follows. Section 2 presents the system and
threat models. The AP protocol is introduced in Section 3, along with the RFID-
adequate implementation philosophy. Section 4 discusses the four practical de-
sign solutions, while Section 5 delves deeper into the protocol security. Finally,
we provide some hardware-related considerations in Section 6, and some con-
cluding remarks in Section 7. Take-Away Points are emphasized throughout the
paper, to facilitate reading and information synthesis (nevertheless, the take-
away points alone do not constitute a good summary of the paper).

2 System Model, Threat Model, and Challenges

We consider a ubiquitous RFID environment, in which RFID readers are mounted
in most public places, such as grocery stores, bars or train stations, and are car-
ried around by individuals, in the form of their smart phones or laptops. In
our model, most products available in stores contain individual RFID tags, and
cannot be individually re-programmed at checkout (for instance, to “kill” the
resurrecting duckling in each product, the checkout reader would have to estab-
lish secure individual communication with each item – a simple inventory would
not suffice). Moreover, we assume that most RFID tags are designed according
to the same flexible RFID standard. The tags attached to various items need to
be usable by the customers, inside their homes, with their smart refrigerators,
bookshelves and wardrobes.

Nevertheless, the RFID tags should not allow themselves to be inventoried
by illegitimate readers during their trip from the store to the customer’s home,
or during any subsequent times when the products to which they are attached
are worn or carried around. Our threat model consists of illegitimate readers
attempting to inventory the tag. Since commercial-grade RFID devices (readers
and tags) are designed for close-range communication, we do not concern our-
selves with illegitimate readers that might eavesdrop on the legitimate reader
and impersonate the latter. This sort of attack is normally beyond the scope of

3



pairing protocols. It is also beyond the scope of pairing protocols to deal with
jamming attacks. For completeness, we should also mention that attacks where
the malicious entity attempts to modify the information transmitted over the
channel in a controlled fashion (as in [8]) are not practical for our protocol. This
is due to the fact that, in our protocol, the only information-bearing signals are
transmitted by the tag. To mount such an attack, an adversary would need to be
in close proximity to the tag (to receive its query responses), achieve a certain
level of synchronization with the tag (in the presence of any scattering phenom-
ena), and transmit with power well above that of the tag’s backscattered signal.
Otherwise, since most modern RFID protocols use a variant of frequency-shift-
keying modulation (F2F, FM0, MMS, etc.), based on detecting transitions rather
than power levels, the results of such an attack would be totally unpredictable
(hence categorized as jamming).

Our time-based trust-earning protocol raises several serious challenges. To
better understand them, consider the following two real-life scenarios, which
summarize the model for the environment in which our AP protocol is intended
to function, and the model for the attacks that the AP protocol should be able
to foil.

Scenario 1—legitimate pairing: A new tag is brought into the home envi-
ronment. The tag is attached to a product, like a food or clothing item, and
should be used by a home reader, such as one in a smart fridge or wardrobe [6,
7]. The moment the tag enters the radius of action of a reader, the reader begins
“courting” the tag. The reader needs to gather enough information about the
tag, so that it will be able to prove to the tag that it has been around for a long
period of time, which defines it as a legitimate reader.

Scenario 2—the man on the bus: A certain tag is carried around by its owner,
and subjected to the owner’s daily routine. The routine includes a several-hour
bus ride to work. The attacker happens to also ride the same bus, and his
customized reader attempts to pair with the tag. However, the attacker cannot
spend more than several hours a day in the proximity of the tag, without being
detected.

Take-Away Point 1 It is important to note that passive RFID tags generally
have no internal time reference. A tag’s only notion of time comes from suc-
cessive reader queries. This makes it unfeasible for the tag to keep track of the
actual time spent in the company of a certain reader per day. If in Scenario 1 the
consumer takes the tag outside the home for a short while—and while outside the
home, the tag is interrogated by other readers—(or if the tag becomes inaccessible
to the reader due to some form of temporary interference), then upon return, the
tag does not know whether it has been a minute or a day. On the other hand,
if the tag would just count the number of queries from a certain reader, and
pair with the reader after a certain threshold is reached, then it would only take
several days for the “man on the bus” in Scenario 2 to gain control of the tag.

In conclusion, to differentiate between the legitimate reader and the “man
on the bus”, it does not suffice to consider only the quantity of time spent in

4



the presence of the tag. Rather, we need to take advantage of the time quality:
we can expect that the time spent by the legitimate reader in the company of
the tag is less likely to exhibit large interruptions than the time spent by the
attacker in the proximity of the tag.

Take-Away Point 2 To summarize, our pairing protocol should have the fol-
lowing characteristics:

– It should be automatic;
– It should enable the legitimate reader to pair with the tag after spending

enough time in the presence of the tag;
– It should not allow the pairing between a tag and a reader based only on the

short but many interactions between them;
– It should not rely on any absolute time references;
– It should be adequate for implementation in low-cost, resource-constrained

passive RFID tags.

3 The Adopted-Pet (AP) Protocol

Our Adopted-Pet (AP) protocol relies on the fact that a reader located inside
the tag owner’s home should be able to spend more uninterrupted time in the
presence of the tag than any other reader located anywhere outside the home.
By uninterrupted time we mean an interval of time during which the tag is not
interrogated by any other reader. If the tag is interrogated by a different reader
between two such uninterrupted time intervals, we say that the tag and the
initial reader have become desynchronized. Naturally, a reader located in the tag
owner’s place of work might have an advantage similar to a reader located in the
home environment, but we should assume that the place of work is generally a
safe environment (otherwise, the tag owner has more serious problems than his
RFID tag being inventoried).

The AP protocol is described in Figure 1. The reader attempts an inventory
of all the tags within its reach. As soon as a tag accesses the medium, and the
channel is proved to be clear (no collisions are detected) [1], the reader proves
to the tag that it can be trusted. The tag will only respond with its Universal
Product Code (UPC) if the reader querying it proves that it knows the tag’s
secret password. Otherwise (if the tag is new), the tag will assume that the
reader is not legitimate, and it will respond with a “no trust” sequence, followed
by a piece of information related to the secret password—throughout this paper
we shall call this “a clue”. If the reader keeps querying the new tag, for long
uninterrupted time intervals, it will eventually accumulate enough information to
learn the tag’s secret password. However, if a certain malicious reader queries the
tag for many short uninterrupted time intervals, such that between any two such
time intervals the tag receives an unknown number of queries from other readers,
the information extracted from the tag’s responses should be of little value to the
malicious reader. It is important to note that our protocol integrates naturally
with the current RFID singulation protocols; that is, only minor changes need to

5



 

 

Reader Tag 

Prove legitimacy 

Trust reader? 

Query, reply, ACK 

Generate clue 

NO 

Yes Respond with UPC 

Tag 

inventoried 

Send “no trust”, clue 

UPC received? 
Yes 

NO 

Memorize clue 

Fig. 1. An outline of the AP protocol.

be made to both reader and tag, while the physical and medium access control
layers remain unchanged. Moreover, a single reader should be able to deal with
large numbers of new (distrustful) tags simultaneously.

We envision a system in which a reader can gather information about the
tag’s secret password at a rate that starts at an initial value, and increases
exponentially with every new tag response. However, if the reader and the tag
become desynchronized, the rate of gathering information returns to its initial
value, and starts increasing from there. Note that this does not imply that the
information obtained by the reader during the first uninterrupted time interval is
lost. When the gathered information reaches a certain threshold, the tag’s secret
key can be learned. We shall refer to such an idealized system as an “exponential-
leakage-rate system”. The gathering of information is represented in Figure 2,
for three different scenarios: (a) the information threshold is reached by a reader
which queries the tag during the single uninterrupted time interval [t0, t4], (b)
the information threshold is reached by a reader that queries the tag during
two distinct uninterrupted time intervals [t0, t3] and [t5, t7], and finally (c) an
attacker queries the tag during the short uninterrupted time intervals [t0, t2],
[t5, t6], and [t8, t9], without reaching the information threshold. Note that our
exponential-leakage-rate system also displays a time threshold t1 − t0. In order
for a reader to obtain any information about the tag’s secret password, the reader
should query the tag for an uninterrupted time interval of at least t1 − t0. For
example, no information is obtained by the attacker in the third scenario (c)
during interval [t5, t6].

In the spirit of recycling, we propose to use cryptosystems which lose infor-
mation about their secret key at such an increasing rate, but only when surveyed
continuously. As an intuitive (although neither practical, nor desirable) example,
the password could be the title of a book from a library. The tag could transmit

6



 

 

time 

t1 t4 t5 t6 t7 t8 t9 t3 t2 t0 

Threshold 

Information 

Fig. 2. Gathering information about the secret key for the AP protocol, in an
exponential-leakage-rate system.

one letter from the book, in order, every minute. If the reader listens continu-
ously for a large period of time, it will obtain an entire chapter, and probably
be able to identify the book. Similarly, if the reader listens for several medium-
sized distinct uninterrupted time intervals, it will obtain substantial pieces of
two different chapters, probably leading to the identification of the book as well.
However, if an attacker can only listen over many really short uninterrupted time
intervals, it will get a meaningless set of words, without even a position reference
in the book. Clearly, this example does not have good security properties, since
an attacker might identify the book by focusing on very peculiar words, or by
looking at word frequencies.

For a more practical solution, consider the following implementation philos-
ophy, that relies on the well-known linear-feedback shift register (LFSR).

Take-Away Point 3 Assume that the tag contains an internal LFSR, of length
L, the characteristic polynomial of which (of degree L) is programmable by an
authorized reader, and constitutes the tag’s secret password. If the reader proves
to the tag that it knows the characteristic polynomial of its LFSR, the reader
is considered authorized, and the tag responds to its queries with the UPC, and
allows the reader to re-program the LFSR. On the other hand, if the RFID tag
does not trust the querying reader, it generates a single bit with its internal
LFSR (of length L), and responds with this bit. The reader memorizes the bit.
If the reader can gather 2L contiguous bits, it can then solve for the coefficients
of the LFSR’s characteristic polynomial—a linear system of L equations with L
unknowns. Note that efficient methods for solving the system may be implemented
in the reader, such as the Berlekamp-Massey algorithm [9]. It is interesting to
note that the legitimate reader is expected to mount a successful linear-complexity
attack against the tag.

The fact that an authorized reader is allowed to re-program the tag’s LFSR
provides a form of forward security – should the tag’s secret leak at some point

7



in time, the presence of the owner in a certain spot at a previous time should not
be verifiable. Moreover, this ensures that any information about the tag’s secret
which leaks to an adversary (see Figure 2) becomes useless before the secret is
breached.

Example 1 Let us consider a concrete example. An RFID tag can be throttled
[10] to respond only once every minute. If the tag has a built-in LFSR of length
L = 300, any reader that spends an uninterrupted time of 10 hours in the tag’s
proximity can determine the characteristic polynomial. Suppose, instead, that the
reader can only afford to spend 7.5 hours a day with the tag. The first equation
can be written only after 5 hours of uninterrupted time (i.e. L + 1 queries), as
discussed in more detail in Section 5.1. Hence, the characteristic polynomial can
be discovered after only two days. On the other hand, if an attacker gains access
to the tag for a single session of, say 5 hours (this would include any possible
“man on the bus” type of attacker), he can only gain access to a contiguous
bit sequence of length L = 300. This leaks absolutely no information about the
characteristic polynomial, since any LFSR with a register length at least 300 is
capable of producing any non-zero 300-bit sequence. Even if the attacker gathers
a large number of such L-bit sequences, over the course of a year, the ubiquitous
RFID environment ensures that the number of bits generated by the tag’s inter-
nal LFSR between two attacker sessions is unknown and unpredictable. Hence,
the attacker’s information is completely useless both because the search space
for the missing bits would be prohibitively large and also because there may be
a great many different polynomials capable of producing each of the individual
subsequences obtained.

 

 

time 
t1 t0 

Threshold 

Information 

t2 

LFSR-based 

AP protocol 

Exponential 

leakage 

Fig. 3. The LFSR-based, vs. the exponential-leakage-rate system-based AP protocol.

Note that in Example 1 above, the number of possible configurations for the
tag’s internal LFSR is at least equal to the number of primitive polynomials of

8



degree 301 over GF(2), which is given by φ(2301−1)
301 ≥

√
2301−1
301 ∼ 1042, where

φ(·) is Euler’s totient function.

Take-Away Point 4 The LFSR-based AP protocol is a first-order approxima-
tion of our exponential-leakage-rate concept, as illustrated in Figure 3.

Take-Away Point 5 The AP protocol has all of the desired features of Take-
Away Point 2:

– Since the tag responds to all querying readers (although it responds with the
UPC only to trusted readers), giving untrusted readers a chance to earn their
trust, the protocol is fully automatic;

– Since it is based on the legitimate reader spending large periods of uninter-
rupted time in the presence of the tag, a home reader (like a smart fridge or
bookshelf) would be able to pair with the tag overnight;

– Since no information about the tag’s secret is leaked until a relatively long
interval of uninterrupted time is spent with the tag, the protocol is secure
and guarantees user privacy;

– Since the tag is only concerned with verifying whether the reader knows its
secret, and with running its internal pseudo-random bit generator, the pro-
tocol does not need the tag (or the reader) to keep an absolute time reference;

– Since our implementation philosophy relies on a simple LFSR, we should be
able to implement the protocol with very little expense of resources.

In the following sections we provide a more complete analysis, including
alternative implementation, and how to deal with tag-reader desynchronizations.

4 Design Considerations

At the heart of our proposed implementation of the adopted pet protocol is a
pseudo-random bit generator implemented (as a finite-sate machine – FSM) on
a passive RFID tag. The exact details of the generator are not specified in the
protocol. In fact, the protocol assumes that these details are secret.

Pseudo-random bit generators are heavily used in cryptography for stream
ciphers. When used in this way, the two parties to the communication must
utilize exactly the same generating algorithm and agree on a shared secret—the
encryption key. Usually this means that the details of the algorithm such as the
characteristic polynomials and the filtering function or combining function, are
public knowledge and the encryption key takes the form of the initial state of
the generator.

However, that is not how we will be using the generator. In our context, there
is no shared secret, and in fact, the state of the generator is not all that impor-
tant. Instead, we treat the specific parameters of the generator as secret. Each
tag will have its own set of parameters. In our realization of the AP protocol, the
RFID tag’s key is the characteristic polynomial. In order to gain the trust of the
tag, the reader must prove that it knows the polynomial, either by sending it to

9



the tag, or by predicting additional bits of the sequence and sending those to the
tag. This latter “proof” is desirable if the tag is not aware of the characteristic
polynomial associated with its internal FSM.

We shall discuss several implementation options in the following subsections.
For now, we review some of the simple facts behind pseudo-random bit gen-
erators. Let z0, z1, z2, . . . be a sequence of bits generated by the tag. As it is
generated by a finite state machine, the sequence is eventually periodic. Conse-
quently, it is possible to recreate the sequence via a linear recurrence relation
such as

zj+L+1 = c0zj + c1zj+1 + · · ·+ cL−1zj+L (1)

with c0, c1, . . . , cL−1 ∈ {0, 1}. Computations are performed in the two-element
field, F2. This is nothing but an algebraic formulation of a linear feedback shift reg-
ister. Note that the entire sequence is determined by the coefficients c0, . . . cL−1

and the initial seed z0, . . . , zL−1. The smallest value of L for which a recurrence
such as (1) exists is called the linear complexity of the sequence. The polynomial

f(X) = c0 + c1X + c2X
2 + · · ·+ cL−1X

L−1 + XL (2)

is called the characteristic polynomial of the sequence.
The following well-known fact is relevant to this discussion.

Lemma 1 The characteristic polynomial of a sequence of linear complexity L
can be computed from 2L consecutive bits of the sequence.

Further discussion of this issue is postponed until Section 5.1 because it
concerns not only the legal owner of the tag, but also an eavesdropper who may
wish to inappropriately gain the trust of the tag. In the following subsections we
discuss some potential designs.

4.1 The Bare Linear Feedback Shift Register

So far, in the family of finite-state machines we have discussed only the LFSR.
The LFSR is a good candidate for our AP protocol, but may not be able to
satisfy all foreseeable demands. Take the following example.

Example 2 Consider a system with the same privacy characteristics as that in
Example 2 (10 hours minimum uninterrupted time spent with a reader before
pairing, and 5 hours minimum uninterrupted time before any information is
leaked). However, assume that the tag is required to respond to interrogations
at least once every second (instead of once every minute as in Example 1). The
tag’s internal LFSR should have length L = 18000.

Such an LFSR is too long for practical purposes. As discussed in Section 6
below, the extremely stringent cost constraints characteristic of RFID technology
do not allow the use of LFSRs of total length more than 150 for security purposes.
This value is only half the length we used in our Example 1, and less than one
hundredth of the length required by Example 2.

10



However, implementing the generator as a simple LFSR of length (and, for a
primitive characteristic polynomial, linear complexity) L ≤ 150 is almost surely
too low for reasonable security.

Take-Away Point 6 To conclude, our protocol calls for a pseudo-random bit
generator with linear complexity L of moderate size (in the order of 104), in-
volving registers with cummulated length less than 150. The bit-generation rate
and linear complexity should be such that the legitimate owner can collect 2L
consecutive bits under normal circumstances, while an eavesdropper is unlikely
to collect even an L-bit subsequence in each attempt.

Several methods are available for increasing the linear complexity of a LFSR-
based pseudo-random bit generator. In what follows, we discuss three of the most
popular ones.

4.2 The Nonlinear Combination Generator

A nonlinear combination generator is composed of N LFSR’s operating in sync.
At each step, each of the shift registers generates a new output bit simultaneously
– let these outputs be x1

n, x2
n, . . . xN

n . The output of the generator is obtained by
applying a nonlinear combining function f to the outputs of the component
LFSR’s: zn = f(x1

n, x2
n, . . . xN

n )
The period of the resulting sequence {zn} will be the least common multiple

of the periods of the component generators. If all of the component LFSR’s have
primitive characteristic polynomials, and if the degrees of those polynomials are
pairwise distinct and approximately equal to L0, then the linear complexity of
the output sequence will be in the order of Lr

0, where r is the nonlinear order
[11, 6.48] of the function f [11, 6.49].

However, while the bare LFSR was only subject to linear-complexity attacks,
the more sophisticated nonlinear combination generators are also the subject of
correlation attacks. In fact, their vulnerability against correlation attacks is a
direct function of the correlation immunity of f [11, 6.52]. It is also known [11,
6.53] that if the nonlinear function f is m-th order correlation immune, and
balanced, then its nonlinear order is bounded as r ≤ N −m− 1. For a guide to
constructing correlation-immune functions of a given order, the reader is refered
to [12].

In the remainder of this section, let us consider that such a nonlinear m-th
order correlation immune function f , of nonlinear order N−m−1 is readily avail-
able. The linear complexity L of the nonlinear combination generator employing
f is O(LN−(m+1)

0 ), the total register length is NL0, and the complexity of a cor-
relation attack is O(22L0(m+1)) [11]. We consider that resistance to correlation
attacks of order less than 2128 is adequate for our application.

Example 3 Imposing our design constraints, we get NL0 < 150 and 2L0(m +
1) > 128, which result in N < 150/L0, and (m + 1) > 64/L0. The linear
complexity is thus L < L

86/L0
0 . To accomodate the requirements from Example

11



2, we can set L0 = 30, yielding a linear complexity L ' 17000, and requiring
a number of N = 5 registers (of length L0 each), and a first-order correlation
immune function f of nonlinear order m = 3.

It is worth noting that the function L(x) = xa/x with x > 0 has first-order
derivative

dL(x)
dx

= xa/x a

x2
(1− ln(x)) , (3)

which implies the existence of a single (global) maximum at x = e (Euler’s
number). Hence, for discrete x = L0, the maximum is always at L0 = 3, and
roughly equal to ea/e. Since in our scenario a = (N−m−1)L0, it is possible that
for certain design constraints (small total register length or high complexity of the
correlation attack), the desired linear complexity is not achievable. Also, when
the desired linear complexity is achievable, there will generally be two possible
choices for L0. For implementation purposes, the value larger than 3 should be
desirable.

4.3 The Nonlinear Filter Generator

A nonlinear filter generator consists of an LFSR of length L0 and a nonlin-
ear filtering function F of nonlinear order r. Starting from an initial seed (or
state) x0, x1, . . . , xL0−1, the LFSR determines additional bits according to the
recurrence relation

xn+k = c0xn + c1xn+1 + · · ·+ cL0−1xn+L0−1.

The output of the generator is the sequence z0, z1, . . . determined by the rule
zn = F (xn, xn+1, . . . , xn+L0−1).

The period of the output sequence is the same as that of the LFSR, which
can be set at 2L0 − 1 by choosing the characteristic polynomial of the LFSR to
be primitive. The linear complexity of the output sequence can be bounded as
[13]:

(
L0

2

)
≤ L ≤

r∑

j=1

(
L0

j

)
, (4)

where r denotes the degree of the polynomial F (i.e. F ’s nonlinear order).
The nonlinear filter generator is subject to multiple types of attacks, in ad-

dition to the linear-complexity attack. In what follows, we discuss these attacks
and show that none of them is a serious concern for our application. The in-
version attacks of [14, 15] rely on the public knowledge of the component LFSR
structure and of the nonlinear filtering function (which in our AP protocol are
the secrets of the tag), and can be foiled anyway by selecting a proper generator
design. Another class of attacks, which also require complete knowledge of both
the characteristic polynomial of the LFSR and the filtering function, are the
algebraic attacks of [16].

12



Several types of correlation attacks have been investigated (see [12] for a
literature review), but they all assume publicly-known LFSR connection poly-
nomials. It is interesting to note that some attacks, which assume that the non-
linear function is also secret, will first attempt to find an equivalent nonlinear
combination generator [12, 17].

For our application, the fact that the nonlinear filter generator uses a single
LFSR has a certain advantage over the other multiple-LFSR pseudorandom bit
generators like the nonlinear combination generator discussed in Section 4.2. To
see this, note that the divide-and-conquer correlation attacks devised for the
nonlinear combination generator will brute-force the initial state of one LFSR
at a time. Hence, they can be easily adapted to deal with unknown LFSR char-
acteristic polynomials by brute-forcing these polynomials, along with the initial
states, one LFSR at a time. However, the single LFSR in the nonlinear filter
generator can be designed with a register length of roughly L0 = 150 (if we
neglect the resources required for the implementation of the nonlinear function).
Note that this value of L0 guarantees a linear complexity at least in the order of
104, which is what was required in Example 2. However, adapting the existing
attacks to an unknown characteristic polynomial is no longer practical – brute-
forcing the single, longer LFSR would increase the complexity of the attack by
O(2150).

4.4 The Shrinking Generator

A shrinking generator [18] consists of two registers of lengths LA (for the A-
sequence, or the output-generating sequence) and LS (for the S-sequence, or the
controlling sequence), controlled by the same clock. The generator only produces
an output bit at time n if the n-th bit of the control sequence is 1. In this case,
the output of the generator coincides with the n-th bit of the output-generating
sequence. However, if the n-th bit of the control sequence is 0, the generator does
not output anything. The linear complexity L of a shrinking generator defined
as above was bounded in [18] as LA2LS−2 ≤ L ≤ LA2LS−1.

A variant of the shrinking generator, the “self-shrinking generator”, consists
of a single LFSR. The odd bits of the LFSR’s output function as the A-sequence,
while the even bits work as the S-sequence. The linear complexity of the self-
shrinking generator with a register of length LSS was shown in [19] to be bounded
as 2bLSS/2c−1 ≤ L ≤ 2LSS−1 − (LSS − 2).

Looking back to Example 2, a linear complexity of L = 18000 could be
achieved by a self-shrinking generator of length only LSS = 32, or by a shrinking
generator with two registers of length LS = LA = 13.

However, it turns out that the easily-achievable high linear complexity of
the shrinking generator and its variants comes at a cost. It was shown in [18]
that the shrinking generator (with secret connection polynomials) is subject to
a correlation attack that requires only 2LALS contiguous bits and time at most
O(22LS LSL2

A) [18]. If we recall that L ≥ LA2LS−2, we see that in order to
achieve a reasonably high computational complexity (which would render the
protocol secure from an attacker)—a complexity in the order of 2128 would be

13



acceptable—we need to increase the linear complexity to values much larger than
our AP protocol can deal with. Recall that our protocol relies on the legitimate
user to mount a successful linear-complexity attack.

Example 4 Take LA = LS = L0. Our design constraints can be written as
2L0 < 150 and 22L0L3

0 > 2128. The latter one implies L0 > 56, which requires
a total register length of 2L0 > 112 (this would satisfy the first constraint), but
yields a linear complexity L > L02L0−2 ' 1018. For a legitimate reader to mount
a successful linear-complexity attack within 10 hours of uninterrupted time, it
would need to querry the tag more than 1013 times per second. Note that the
highest frequency band allowed for RFID applications is around 10GHz (UHF-
RFID)[1], and hence RFID applications cannot accommodate a “baseband” sig-
nal with a bandwidth of 10GHz.

Take-Away Point 7 To conclude this section, we have seen that our AP proto-
col can be implemented at very low cost, by using a nonlinear filter generator, or
a nonlinear combination generator. While a bare LFSR could be adequate for cer-
tain low-security-risk applications (like RFID tags attached to groceries) where
a small linear complexity can be tolerated, the shrinking generator increases the
linear complexity more than most applications can handle (it could take years
of uninterrupted UHF communication for a reader to mount a successful linear-
complexity attack against a correlation-immune shrinking generator).

5 Security Analysis

Based on the discussion in Section 4, we can state that the AP protocol imple-
mented with properly-designed nonlinear combination generators, or nonlinear
filter generators, is immune to correlation attacks. Hence, it seems that the best
technique for an attacker to gain control of the tag is to follow the same process
as a legitimate reader: to query the tag and collect a number of bits large enough
to enable a linear-complexity attack. In this section we consider this attack from
the malicious user’s perspective, and show that it is not feasible under normal
conditions. In addition, we discuss whether or not the attacker could extract
more information from the knowledge of the tag owner’s daily routine.

5.1 Linear-Complexity-Based Attacks

Suppose that a reader obtains a sequence of contiguous bits z0, z1, z2, . . . cre-
ated according to the recurrence (1) and wishes to determine the coefficients
c0, c1, . . . , cL−1. The sequence of bits satisfies the following system of linear equa-
tions:

c0z0+ c1z1+· · ·+ cL−1zL−1 = zL

c0z1+ c1z2+· · ·+ cL−1zL = zL+1

c0z2+ c1z3+· · ·+ cL−1zL+1 = zL+2

...
c0zL−1+c1zL+· · ·+cL−1z2L−2 = z2L−1,

(5)

14



in the unknowns c0, . . . , cL−1. Such a system is easily solved for moderately-
large linear complexities L. For example, using ordinary Gaussian elimination,
the system is solvable in time O(L3). This observation constitutes a proof of
Lemma 1.

Note that in the previous paragraph, the linear complexity of the generator
is assumed known in advance. Nevertheless, even if the linear complexity is
unknown, one could simply try every possible linear complexity, starting from 1.
Using Gaussian elimination, the solution (and the linear complexity) would be
found in time at most

O(13) + O(23) + · · ·+ O(L3) ≤ L ·O(L3) = O(L4).

For very large linear complexities L, a reader could implement the Berlekamp-
Massey algorithm [9] which, for every new received bit, computes the smallest-
size LFSR that could have generated the currently-available sequence of bits.
Moreover, the Berlekamp-Massey algorithm does not require that the linear com-
plexity be known in advance.

However, to formulate and solve the system in (5), we implicitly made the
following two assumptions: (A) 2L bits of the sequence are known, and (B) the
known bits are consecutive. The first assumption is essential. It is not hard to
find two distinct sets of coefficients which generate sequences that coincide on
2L − 1 consecutive bits. We emphasize that in this discussion we are treating
the sequence z0, z1, . . . as being generated by a black box.

Now we turn to the second assumption: the consecutiveness of the known
bits. Suppose that instead of consecutive bits, we have obtained 2L bits, with k
unknown bits interspersed among them. We wish to address the complexity of
determining the unknown coefficients c0, . . . , cL−1 in this scenario. By treating
each missing bit as an additional unknown, one can still set up a system of
equations as in (5), but now there will be L + k equations in L + k unknowns.
However, the system is no longer linear: it becomes quadratic. This is because
if zj is an unknown representing a missing bit, then the system will contain
quadratic terms of the form cizj , for i = 0, . . . , L − 1. In fact, of the (L + k)2

terms in the system, approximately Lk of them will be quadratic.
Unlike the situation for linear systems, there is no known efficient method

of solving a quadratic system over a finite field. The problem of finding one
solution to a quadratic system over our field F2 is NP-complete [20], and known
in the literature as the “MQ problem.” Note that NP-completeness is a worst-
case analysis, and it is entirely possible that the system that would arise in
this particular application has a polynomial-time solution. However, none of
the algorithms with which we are familiar seem to apply here. In particular,
algorithms such as XSL [21] are not appropriate since the system is not sparse.
Furthermore, the quadratic system may not have a unique solution. It may
require additional equations (and therefore, additional known bits) to obtain
uniqueness.

Of course, one could always find the solution through exhaustive search. Note
that for each of the 2k choices for the unknown z-bits, we are reduced to a linear

15



system (in the unknown ci’s) that we can solve by Gaussian elimination or by the
Berlekamp-Massey algorithm. Alternatively, we can try each of the 2L choices for
the ci’s and solve the resulting linear system for the unknown bits. The running
time for this approach is therefore O(2min(L,k)).

While this running time ensures that an exhaustive-search attack is not fea-
sible for the man on the bus, the exhaustive-search method may be a good
solution for approaching small desynchronizations between the tag and the legit-
imate reader (as stated in Section 3 above, such desynchronizations can appear
as a result of the user taking the tag outside for a small time interval, or of
temporary interference, such as a cell phone positioned close to the tag). If, for
example, the tag responds to each query with a newly-generated bit, accompa-
nied by the previous three or four bits, the reader can easily (and with good
probability) identify such desynchronizations, and, as soon as it has collected
enough information, proceed with an exhaustive search for the missing bits.

Take-Away Point 8 The considerations above show that, for a legitimate reader
that should have access to a large number of contiguous bits, with small interrup-
tions, finding the secret key should be feasible, by employing a simple exhaustive-
search over the missing bits, and solving the system in (5). However, if the
interruptions are large and the sequences of contiguous bits small (the case of
the “man on the bus”), the secret key is very likely to remain secret.

5.2 Predictable Environments and Tag Tracking

We have already specified that our protocol will function in a ubiquitous RFID
environment. This assumption is not at all restrictive: it is meant to create a
challenging environment for the legitimate user, rather than hinder the attacker.
Whether the assumption holds true or not, the tag is being interrogated numer-
ous times throughout the day, either by various non-authenticated readers, or by
the legitimate reader alone. Therefore, it is safe to assert that the number of bits
produced by the tag’s internal LFSR between two attacker sessions is unknown
and unpredictable.

However, let us suppose that the number of bits produced by the tag’s LFSR
between any two attack sessions is roughly the same (a daily routine, along
with a very punctual attacker might enable this scenario). A natural question is
whether the attacker can synchronize his encounters with the tag owner in such
a manner that would grant him access to consecutive short spans of the tag’s
output. For example, the attacker might be able to obtain S bits of the tag’s
output at each encounter. If the attacker synchronizes the encounters such that
the tag has generated exactly T +S bits between two encounters, where T is the
period of the pseudo-random sequence generated by the tag’s secret FSM, the
bits obtained in two consecutive encounters would be consecutive. Even if the
actual number of bits generated between two encounters a random variable R
with mean T +S and very small variance, the attacker can assume that R=T +S,
and attempt to correct for the error in this assumption by using an exhaustive-
search method of the type described in the previous section. We shall call this
strategy a “predictable-environment attack”.

16



However, due to the fact that even small-linear-complexity FSMs display very
large periods of the output sequence (for linear complexity L, if the characteristic
polynomial of the equivalent LFSR is primitive, the period is T = 2L − 1), it is
safe to assume that all the sequences of S bits that an attacker might be able to
gather in his lifetime belong to the same LFSR period.

Take-Away Point 9 Consequently, any “predictable-environment attack” is re-
duced to the intractable large-desynchronization problem of Section 5.1.

Another problem which may arise in a predictable environment is tag track-
ing. Consider a scenario where the attacker acts as the man on the bus for a while
(possibly multiple encounters), and then wants to use the information gathered
about the targeted tag to verify the presence of its owner in a certain spot, at a
certain time. For example, gaining access to the RFID readers in a bar, the man
on the bus wants to find out whether the victim was present there last night. The
problem is quite complex, and is beyond the scope of this paper. However, for
completeness, in the remainder of this subsection, we briefly discuss a worst-case
type of scenario.

Assume that the attacker has gained access to S1 consecutive bits (highly
unlikely) of the targeted tag’s output on the bus, and collects another S2 con-
secutive bits from the bar’s RFID reader. Let us also assume that the attacker
knows that, if the S2 bits were produced by the targeted tag, then there would
be exactly r unknown bits between the bus encounter and the moment the bar
RFID reader began gathering bits from the tag (that is, the tag was interrogated
r times by other, unknown readers). It is clear that if S1 +S2 < 2L, the attacker
can make no inference about whether the S2 bits were produced by the targeted
tag. This is due to the fact that the attacker’s best strategy is to compute a
system of S1 + S2 + r − L (quadratic) equations with L + r > S1 + S2 + r − L
unknowns, as explained in Section 5.1 above. Such a system would likely admit
an infinity of solutions. On the other hand, if S1 + S2 ≥ 2L, the attacker can
compute a system of more than L + r equations, with L + r unknowns. If the
system has no solution, the attacker can infer that the S2 bits obtained from
the bar were not produced by the targeted tag. However, a more involved prob-
abilistic analysis is required if the system does admit a solution. For example, if
S1 = 1, the fact that the system has a solution does not provide much certainty
about the presence of the targeted tag in the bar. Neither does the case when
S2 is small. On the opposite end, if S1 ≥ 2L and S2 ≥ 2L, then the attacker can
verify the presence of the targeted tag in the bar with absolute certainty. Such
an analysis is beyond the scope of this paper.

Nevertheless, for practical situations, the worst case scenario would still have
the attacker check whether a system of S1 +S2 + r−L quadratic equations with
L + r unknowns has a solution. This problem is as hard as finding the solution,
and would normally prevent the attacker from attaining his goal, as discussed
in Section 5.1 above.

17



6 RFID Hardware Constraints

In Section 4.1 we have already mentioned that we can only afford to implement
the AP protocol using LFSRs of cummulated length less than 150. To see why,
we outline the design limitations imposed by the passive RFID architecture. It
seems to be generally accepted that a reasonable resource expense for security
should not exceed 2000 transistors for a passive RFID tag. Since most pseudo-
random bit generators are based on linear feedback shift registers, let us consider
the implementation of an LFSR on such a tag. Each cell in an LFSR is a latch
with 8 transistors (2 NAND or 2 NOR gates), and each binary addition is an
XOR gate with 5 transistors. This brings the total number of transistors used by
an LFSR of length L0 to roughly 13L0. Based on our ceiling of 2000 transistors,
this limits the number of cells to 150.

Moreover, if the AP protocol implementation dictates the use of a nonlinear
function for combining the outputs of several LFSRs (or filter the state of a
single LFSR), the design should consider registers of total length even less than
150, to allow for the implementation of the function.

7 Concluding Remarks

We have introduced a novel pairing protocol, ideally suited for low-cost, pas-
sive RFID devices. Our protocol is entirely automatic, and based on the two
pairing devices spending large periods of uninterrupted time in the proximity
of each other. Successful pairing is based on the legitimate reader mounting a
liner-complexity attack on the tag’s internal pseudo-random number generator
(PRNG), where the tag’s secret key is the internal structure of the PRNG (or
more precisely, the characteristic polynomial of the equivalent LFSR). The algo-
rithm design prevents an unauthorized user from learning the tag’s secret, and
hence from pairing with the tag. This level of security is ensured by the fact that
any unauthorized user should not be able to spend an uninterrupted period of
time larger than several hours a day in the company of the tag.

The examples provided throughout the paper show that practical implemen-
tation of the tag’s PRNG should consider either nonlinear combination gener-
ators or nonlinear filter generators. We have shown that, while simple LFSRs
may be considered for certain applications, more powerful linear-complexity-
enhancing designs, like the shrinking generators, could render the linear-complexity
attacks (on which the legitimate user relies) unfeasible.

The Adopted Pet protocol is a first step towards a paradigm where authenti-
cation and security is based on the legitimate parties mounting successful attacks
on each-other’s cryptographic protocols, and where the work of anonymous at-
tackers and hackers can serve as the basis for faster authentication and legitimate
decryption.

18



8 Acknowledgement

This work was partially supported by NSF under grants No. CNS-0644238, CNS-
0831470, and DUE-0911708. We appreciate anonymous reviewers for their valu-
able suggestions and comments.

References

1. Dobkin, D.M.: The RF in RFID: passive UHF RFID in Practice. Elsevier Inc.
(2008)

2. Stajano, F., Anderson, R.: The resurrecting duckling: security issues for ad-hoc
wireless networks. AT& T Software Synposium (1999)

3. Mayrhofer, R., Gellersen, H.: Shake well before use: authentication based on ac-
celerometer data. Pervasive Computing 4480 (2007) 144–161

4. Oshiba, T., Nebayashi, H.: Device pairing based on adaptive channel fluctuation
control for large-scale organizations. ISCC 2009. IEEE Symposium on Computers
and Communications (2009) 901–906

5. Soriente, C., Tsudik, G., Uzun, E.: BEDA: button-enabled device association.
International Workshop on Security for Spontaneous Interaction (IWSSI07) (2007)

6. Luo, S., Xia, H., Gao, Y., Jin, J., Athauda, R.: Smart fridges with multimedia
capability for better nutrition and health. International Symposium on Ubiquitous
Multimedia Computing, 2008. UMC ’08. (2008) 39–44

7. Gu, H., Wang, D.: A content-aware fridge based on RFID in smart home for home-
healthcare. 11th International Conference on Advanced Communication Technol-
ogy, 2009. ICACT 2009. 2 (2009) 987–990

8. Hopper, N.J., Blum, M.: Secure human identification protocols. Advances in
Cryptology ASIACRYPT 2001 2248/2001 (2001) 52–66

9. Massey, J.L.: Shift-register synthesis and BCH decoding. IEEE Trans. Information
Theory 15 (1969) 122–127

10. Juels, A.: Minimalist cryptography for RFID tags. Security of Communication
Networks (SCN) (2004)

11. Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography.
CRC Press (1996)

12. Cusick, T.V., Stanica, P.: Cryptographic Boolean Functions and Applications.
Elsevier Inc. (2009)

13. Lhlein, B.: Attacks based on conditional correlations against the nonlinear filter
generator. In: In Cryptology ePrint Archive, Report 2003/020. (2003)

14. Golic, J.D., Clark, A., Dawson, E.: Generalized inversion attack on nonlinear filter
generators. IEEE Trans. Computers 49 (2000) 1100–1109

15. Golic, D.: On the security of nonlinear filter generators. Proc. Fast software
encryption – Cambridge’96 (1996) 173–188

16. Courtois, N.T., Meier, W.: Algebraic attacks on stream ciphers with linear feed-
back. In: Advances in cryptology—EUROCRYPT 2003. Volume 2656 of Lecture
Notes in Comput. Sci. Springer, Berlin (2003) 345–359

17. Siegenthaler, T.: Cryptanalysts representation of nonlinearly filtered ml-sequences.
In: Proc. of a workshop on the theory and application of cryptographic techniques
on Advances in cryptology—EUROCRYPT ’85, New York, NY, USA, Springer-
Verlag New York, Inc. (1986) 103–110

19



18. Coppersmith, D., Krawczyk, H., Mansour, Y.: The shrinking generator. Advances
in cryptology (CRYPTO’93) 773 (1993) 22–39

19. Blackburn, S.R.: The complexity of the self-shrinking generator. IEEE Transac-
tions on Information Theory 45 (1999) 2073–2077

20. Fraenkel, A.S., Yesha, Y.: Complexity of problems in games, graphs and algebraic
equations. Discrete Applied Mathematics 1 (1979) 15 – 30

21. Courtois, N.T., Pieprzyk, J.: Cryptanalysis of block ciphers with overdefined sys-
tems of equations. In: Advances in cryptology—ASIACRYPT 2002. Volume 2501
of Lecture Notes in Comput. Sci. Springer, Berlin (2002) 267–287 Updated version:
http://eprint.iacr.org/2002/044.

20


