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Abstract. The Wireless Identification and Sensing Platform (WISP)
can be used to demonstrate and evaluate new RFID applications. In this
paper, we present practical results of an implementation of elliptic curve
cryptography (ECC) running on the WISP. Our implementation is based
on the smallest recommended NIST elliptic curve over prime fields. We
meet the low-resource requirements of the platform by various code-size
and memory optimizations. Furthermore, we provide a cryptographic
framework that allows the realization of different ECC-based protocols
on the WISP. We evaluated our implementation results by considering
platforms with and without a hardware multiplier. Our best implemen-
tation performs a scalar multiplication using the Montgomery powering
ladder within 1.6 seconds at a frequency of 6.7 MHz.
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1 Introduction

Radio-Frequency Identification (RFID) is a wireless technology that allows the
communication with passively powered devices. It is a primer for the Internet of
Things where many objects are connected to each other and to the Internet to
provide a more convenient life to users. With this vision in mind, several security
and privacy issues arise that have to be challenged. This paper addresses the
implementation of elliptic curve cryptography (ECC) on such platforms in order
to overcome these concerns.

Elliptic curve cryptography (ECC) is a public-key technique that has gained
much importance due to the high security level while using small key sizes. It
is therefore a promising primitive for passive RFID devices to provide various
public-key services. These services are for example authentication, confidential-
ity, non-repudiation, or data integrity. In view of RFID, privacy-preserving au-
thentication is one of the most challenging services. In 2007, S. Vaudenay [31]
provided a formal model for RFID protocols and proved that public-key cryp-
tography is required to provide the highest level of feasible privacy in RFID
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applications. ECC is a cryptographic primitive that provides a basis for such
protocols.

In order to evaluate new RFID protocols and applications, Intel Research
Seattle developed a common RFID platform that operates in the UHF frequency
range. The Wireless Identification and Sensing Platform (WISP) consists of a
tiny low-resource microcontroller that is attached to a dipole antenna. Next
to the microcontroller, the tag features several sensors such as temperature,
light, and 3D accelerometer which allows a broad range of RFID and sensor
node applications. There already exist many publications that use the WISP
as a demonstrator platform [24, 25, 32, 27]. Only a few publications presented
cryptographic implementations on the WISP such as proposed by H.-J. Chae et
al. [2]. They implemented the block cipher RC5 and demonstrated the feasibility
of symmetric cryptography on that platform.

In this paper, we present an implementation of elliptic curve cryptography on
the WISP. To the authors’ knowledge, this is the first publication that demon-
strates the feasibility of ECC on that platform. First, we describe several opti-
mizations on the arithmetic level to meet the low-resource requirements of the
WISP tag. We apply a hybrid multiplication method that reduces the mem-
ory and computational requirements to a minimum. Second, we evaluate the
performance of the Montgomery powering ladder based scalar multiplication
over the smallest recommended NIST elliptic curve over Fp192. Our results show
that when running at a frequency of 6.7 MHz WISP tags that do not support
a hardware multiplier need 8.3 seconds and only 1.6 seconds when a hardware
multiplier is supported. As an outcome, we show that ECC-based RFID proto-
cols can be realized on the WISP and allow the evaluation of new cryptographic
implementations for RFID as a proof of concept demonstrator.

The rest of the paper is structured as follows. In Section 2, we give an in-
troduction to elliptic curve cryptography. Section 3 describes the basic features
of the WISP tag and the setup which has been used for our experiments. After-
wards, we give implementation details in Section 4. Results of our implementa-
tions are given in Section 5. Section 6 concludes the paper and describes future
work.

2 Elliptic Curve Cryptography

Each cryptographic principle is based on a mathematical problem that is believed
to be “hard”. Elliptic curve cryptography relies on the Elliptic Curve Discrete
Logarithm Problem (ECDLP) that can only be solved in exponential running
time yet. This is a major advantage compared to problems based on the integer
factorization or the discrete logarithm problem where subexponential algorithms
exist.

An elliptic curve E over a field K is defined with the long Weierstrass equa-
tion with the restriction of the discriminant being different from zero which
guarantees that the curve is smooth. By using admissible change of variables,
a simplified equation can be achieved that is isomorphic to the initial equation
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for elliptic curves. Depending on the characteristic of the underlying field K,
different cases have to be considered.

In this paper, we deal with elliptic curves over a finite field Fq of characteristic
6= 2, 3 which are defined by the short Weierstrass equation

y2 = x3 + ax+ b, (1)

with a, b ∈ Fq and the discriminant ∆ = −16(4a3 + 27b2). The elliptic curve is
defined as a set of points P = (x, y) ∈ Fq fulfilling Equation (1). With the point
at infinity O, the chord rule for point addition and the tangent rule for point
doubling an additive Abelian group is formed. By using this algebraic structure
and the two group operations of point addition and point doubling, a scalar
multiplication can be performed. A scalar k is multiplied with a point P on the
elliptic curve resulting in another point Q = k ·P. Due to the ECDLP, it is hard
to determine k from P and Q.

Elliptic-curve points can be represented in different coordinate systems. Affine
representation makes use of two coordinates (x, y) to represent a point on the
elliptic curve. For the group operations of point addition and point doubling,
they require inversions in Fq which are by far the most expensive field oper-
ations. By using projective coordinates, it is possible to avoid such inversions
by the costs of an additional coordinate. Homogeneous projective coordinates1

use three coordinates (X,Y, Z) where x = X
Z and y = Y

Z . Jacobian projective

coordinates use the relation x = X
Z2 and y = Y

Z3 . We refer the reader to e.g. [21,
9] for a more detailed introduction to elliptic curves.

3 WISP UHF RFID Tag

This section gives a brief introduction to the Wireless Identification and Sensing
Platform (WISP4.1DL). First, we will describe the hardware of the WISP tag.
Second, we will describe the firmware and protocol implementation of the tag.
Finally, the reader setup and programming tools that have been used for the
implementation are described.

3.1 Hardware

The WISP tags have been developed by Intel Labs Seattle in order to provide
a development platform for new RFID and sensing applications. A picture of
a WISP4.1DL tag is shown in Figure 1. It is a passively powered RFID tag
operating in the UHF frequency range of about 900 MHz featuring an ultra
low power general-purpose microcontroller from Texas Instruments [12] (the
MSP430F2132). The used microcontroller is a Reduced Instruction Set Com-
puter (RISC) processor providing a 16-bit architecture, 8 KB of flash memory,
512 byte of RAM, and 16 working registers where only 12 can be used for general
purpose.

1 We write affine coordinate in lower case and projective coordinates in upper case.
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Fig. 1. WISP4.1DL in front of an UHF RFID
antenna.

In particular, the MSP430 fam-
ily [13] has been especially de-
signed for low-resource applica-
tions. It provides various operat-
ing modes that can be used to
personalize the microcontroller in
terms of high speed or low power.
Such operating modes range from
an active mode (AM) to a low-
power mode (LPM4). These differ-
ent modes basically differ in the
number of submodules being dis-
abled to reduce the power con-
sumption of peripherals. In com-
bination with the supported volt-
age supervisor of the WISP tag,
this feature can be used to sig-
nificantly extend the uptime and
reading range of the tag.

The WISP tag includes several sensors such as a temperature sensor, a light-
level detector, and a 3D accelerometer. These sensors allow the realization of
a broad range of applications. A. Sample et al. [24] have been the first who re-
ported a WISP-tag application by implementing the symmetric block cipher
RC5. N. Saxena and J. Voris [25] extended the use of the accelerometer in order
to generate random numbers which are important in the field of cryptography.
As another example, D. Yeager et al. [32] extended the RFID antenna in order to
serve as a capacitive touch sensor. Because of the combination of both computa-
tion and sensing capabilities, WISPs are perfectly suited for human-activity de-
tection as stated by J. R. Smith et al. [27] since they can deliver motion-detection
capabilities of active sensor beacons in the same battery-free form factor as RFID
tags.

3.2 WISP Firmware

The communication between WISP tags and interrogators (readers) is estab-
lished over the EPC Class-1 Generation-2 UHF RFID protocol [30]. It has been
standardized in ISO/IEC 18000-6C, which defines the physical and logical re-
quirements for a passive backscatter, interrogator-talks-first (ITF) RFID system.

The latest stable release of the firmware—currently the r65 (including the
version HW4.1 SW6.0)—provided by Intel Labs Seattle implements main parts
of the EPC Class-1 Gen-2 protocol. The firmware allows the configuration of the
peripherals such as the temperature sensor or the accelerometer. The sensed data
can be transmitted to the reader by either implementing custom commands of
the protocol or by using simple EPC read/write commands. Additionally, data
encoding can be switched between Miller-2 and Miller-4 modulation with the
latter as default setting.
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3.3 Reader Setup and Programming Tools

We used the Speedway Revolution R220 [11] UHF reader in our experiments. It
supports the EPC Class 1 Generation 2 protocol and provides two high perfor-
mance monostatic antenna ports. The communication between the reader and a
PC is done over a 10/100BASE-T network. Based on this connectivity, the EPC-
global Low Level Reader Protocol (LLRP) v1.0.1 is used as application interface.
The transmit power is up to 32.5 dBm using an external power supply.

As a development environment, we used the IAR Embedded Workbench for
the MSP430 microcontroller. The flash emulation tool MSP-FET430UIF [29] has
been further used to program and debug the WISP tag over an USB interface.

4 Implementation Details

In the following, we give details about the implementation of an ECC framework
that runs on the WISP4.1DL RFID tag. Since only low resources are available,
several optimizations are necessary to allow the execution of ECC-based proto-
cols on that platform.

One of the most limiting resources of the WISP4.1DL platform is the memory.
In fact, the MSP430F2132 is shipped with 8 kB of flash memory where 3.2 kB is
needed only for the EPC Class-1 Generation-2 protocol. Thus, implementations
are limited to only 4.8 kB. In addition, the MSP430F2132 provides 512 bytes
of volatile RAM. The RFID-protocol implementation needs about 200 bytes
so that only 312 bytes are available for ECC. Considering these restrictions,
it is important to carefully balance between speed and memory consumption.
Optimizations such as unrolling of individual operations (such as it is usually the
case in finite-field multiplication routines to increase the speed of execution) are
therefore not always possible. Since the tag is powered passively, it is furthermore
necessary to pay attention to the energy budget. Time-extensive computations
need to be separated into parts after which the tag has to test if enough energy
is available to continue the operation. If this is not the case, the tag gets into a
sleeping mode where the capacitor of the tag can be loaded again to finish the
computation.

Another limiting resource in view of ECC is the lack of a dedicated hardware
multiplier on the MSP430F2132. In fact, the speed of the multiplication opera-
tion largely determines the overall ECC performance. Hardware multipliers can
perform a multiplication within only a few clock cycles whereas a few hundred
clock cycles are needed if no dedicated multiplier is available. However, many
microcontrollers of the MSP430x2xx family feature a hardware multiplier. The
work of C. Gouvêa and J. López [6], for example, made use of such a multiplier
(multiply-accumulate operation) to speed up the computation on a MSP430 mi-
crocontroller. We therefore considered two different implementations for WISP
tags. The first implementation provides ECC operations without a multiplier
(this is the case for the available WISP4.1DL tag). The second implementation
considers a dedicated hardware multiplier and provides ECC operations espe-
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Fig. 2. Overview of the implemented ECC framework.

cially optimized for that scenario (performance results have been simulated in
this case).

4.1 Elliptic Curve Cryptography Framework

We implemented a general framework that provides the basic functionalities to
implement ECC-based protocols on the WISP tag. Considering security and
performance, we decided to base our implementation on a recommended NIST
elliptic curve [23]. Due to the limiting resources, we applied the smallest recom-
mended NIST curve over prime fields which is over Fp192 where the used prime
is a Mersenne-like prime defined as p ≡ 2192 − 264 − 1.

The entire framework has been implemented in Assembly language to speed-
up the computation. As shown in Figure 2, it consists of five main modules: a
random number generator module, the SHA-1 hash-function module, a support
function module, a finite-field arithmetic module, and an elliptic-curve arith-
metic module.

As a random number generator (RNG), we implemented the algorithm pro-
posed by G. Marsaglia [19, 1]. The algorithm provides a good tradeoff between
cryptographic security and computational complexity. It mainly consists of sim-
ple shift and xor operations and can therefore efficiently be implemented on
the MSP430 microcontroller. For the initialization of the RNG, we used the ac-
celerometer as also proposed by N. Saxena and J. Voris [25] in order to generate
a random seed. To guarantee random initialization, the device is locked until
stochastic movement of the WISP tag is detected.

We also implemented the SHA-1 hash function in our framework. In fact,
hash functions are basic building blocks of cryptographic protocols. They are
used, for example, in authentication protocols or digital-signature schemes. Due
to memory reasons, we assume that the data which have to be hashed are shorter
than the block size of the algorithm, which is 512 bits. This limits the code and
memory requirements of our implementation.

The support function module is used to provide basic operations for integer

arithmetics such as comparisons (a
?
= 0, a

?
= 1, a ≥ b), operand copies, or initial-

ization of array elements. These operations are needed mainly for the finite-field
arithmetic and the elliptic-curve arithmetic implementation.
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The finite-field arithmetic module and the elliptic-curve arithmetic module
contain the main operations used to support ECC on the WISP tag. They are
described in the following subsections.

4.2 Finite-Field Arithmetic

Both ECC group operations of point addition and doubling are based on under-
lying finite-field operations. In order to obtain an efficient performance for scalar
multiplication, it is important to optimize these operations as much as possible.
In fact, finite-field operations are heavily used in loops so that thousands of clock
cycles can be saved for scalar multiplication by reducing only one single clock
cycle in the underlying finite-field arithmetics.

The MSP430F2132 microcontroller provides a 16-bit architecture. This means
that all prime-field operations are based on 16-bit operands, i.e. a 192 bit field ele-
ment is stored in a 12-word array structure. In particular, we decided to represent
each field element in little-endian representation. Thus, indirect autoincrement
addressing can be used that is supported by the MSP430 microcontroller. This
special addressing mode provides base-address incrementation after the fetch op-
eration without any additional overhead. This allows efficient array processing
and avoids additional clock cycles.

Addition and Subtraction. The addition of field elements a + b = c is im-
plemented via a loop that iterates through the twelve words of the operands
starting with the least significant word. The operand words are loaded from
memory and added using the ADD and ADDC instruction of the MSP430. In
order to speed up the addition operation, we unrolled the loop. In addition to an
out-of-place version, we also implemented an in-place version of the prime-field
addition where the result overwrites one input operand, i.e. a← a+ b. This has
the advantage that special addressing instructions can be used to save execu-
tion cycles. In fact, 34 % of the total number of clock cycles can be saved while
only increasing the overall code size insignificantly. After the integer addition,
the result has to be reduced modulo the prime p. This can be done by simply
subtracting the prime if the result is larger than the modulus p. The prime field
subtraction has been also implemented by unrolling the instructions. In contrast
to modular addition, the modulus p has to be added if the result is smaller than
zero.

Multiplication and Squaring. Prime-field multiplication and squaring oper-
ations consume most of the running time of a scalar multiplication. They have
therefore a significant impact on the overall running time. Consequently, it is
crucial to put optimization efforts into these routines. As for modular addition
and subtraction, prime-field multiplication and squaring in Fp consist of a multi-
plication step (resulting in a double-precision number) and a followed reduction
step modulo a prime p.



8 Christian Pendl, Markus Pelnar, and Michael Hutter

Two basic multi-precision multiplication algorithms are common: the row-
wise standard schoolbook method (also called operand-scanning form) and the
column-wise Comba method (also called product-scanning form) [4]. Both al-
gorithms process the words in two loops (an outer loop and an inner loop). In
2004, N. Gura et al. [8] introduced a hybrid method that combines the row-wise
and column-wise techniques. The idea behind this method is to make advantage
of the two basic multi-precision multiplication algorithms to increase the perfor-
mance. The Comba method is therefore used in the outer loop of the algorithm
and the schoolbook method is used in the inner loop. Still, the number of re-
quired registers and needed memory accesses strongly depend on the choice of
the algorithm parameter d.

If no hardware multiplier is available on the MSP430, the 16-bit operand-
multiplication routine needs four of the twelve registers available. In addition
to that, two registers are needed for counter variables as loops have to be used
to keep the code size small. Another three registers are necessary to hold the
addresses of the operands. With only three remaining registers, it is not possible
to implement the hybrid method with parameter d = 2 as it would require seven
available registers. Thus, for the WISP tag without hardware multiplier, the
hybrid method has to be implemented with d = 1 which actually corresponds to
the standard Comba method. An MSP430 with dedicated hardware multiplier
can implement the hybrid method with d = 2. This is possible as no additional
registers are needed for the 16-bit multiplication. In addition to make the hybrid
method with d = 2 feasible, we had to use loop unrolling which makes two
registers available previously needed for counter variables. As preferable side
effect, loop unrolling comes with a significant performance improvement to the
cost of substantial code size increase.

For squaring of a field element c = a2, we decided to implement a dedi-
cated squaring operation instead of reusing the multiplication operation. This
needs additional code memory but increases the efficiency of scalar multiplica-
tion since squaring can be computed faster than multiplication. This is due to
the fact that only 78 of the 144 partial products actually have to be computed
in case of 192-bit operands and 16-bit wordsize. The remaining partial products
can be substituted through cheap shift operations. Additionally, the number
of memory accesses and thus required clock cycles can be reduced as only one
operand is present. In case of no hardware multiplier the reduction of partial
product calculations, which are extremely expensive, clearly outweighs the litte
overhead required by the squaring routine. Note that we used the squaring oper-
ation only for the implementation of the MSP430 without a hardware multiplier.
For the MSP430 with a hardware multiplier, no squaring operation has been im-
plemented. This is due to the fact that the overhead becomes more decisive as
the multiplication operation of the dedicated multiplier is much faster than the
software multiplication. Thus, a less significant speed improvement is obtained
by a squaring operation compared to the MSP430 implementation without a
hardware multiplier.
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Algorithm 1 Montgomery powering ladder scalar multiplication

Input: PPP ∈ E(Fq) and k = (kn−1, . . . , k0)2 ∈ N, with kn−1 6= 0
Output: QQQ = kPPP

1: (X0, Z0)← PPP ; (X1, Z1)← 2PPP
2: X0 ← X0 × Z1; X1 ← X1 × Z0; Z ← Z0 × Z1;
3: for i = n− 2 downto 0 do
4: R2 ← Z2, R3 ← R2 + R2, R3 ← R3 + R2, R1 ← Z ×R2, R2 ← 4b×R1,
5: R1 ← X1−ki

2, R5 ← R1 + R3, R4 ← R5
2, R1 ← R1 −R3, R5 ← X1−ki ×R1,

6: R5 ← R5 + R5, R5 ← R5 + R5, R5 ← R5 + R2, R1 ← R1 −R3, R3 ← Xki
2,

7: R1 ← R1+R3, Xki ← Xki−X1−ki , X1−ki ← X1−ki +X1−ki , R3 ← X1−ki×R2,
8: R4 ← R4 −R3, R3 ← Xki

2, R1 ← R1 −R3, Xki ← Xki + X1−ki ,
9: X1−ki ← Xki ×R1, X1−ki ← X1−ki + R2, R2 ← Z ×R3, Z ← xPPP ×R2,

10: X1−ki ← X1−ki − Z, Xki ← R5 ×X1−ki , X1−ki ← R3 ×R4, Z ← R2 ×R5.
11: test power supply().
12: end for
13: return QQQ = (X0, Z).

To fit the final result in the underlying field Fp, the 384-bit product or square
has to be reduced modulo the prime p. As the used NIST prime p is a generalized-
Mersenne prime, the reduced result can be computed by simple additions (fast
NIST reduction [9]). The reduction operation can be therefore performed very
efficiently.

4.3 Elliptic-Curve Arithmetic

The main operation in ECC implementations is the scalar multiplicationQQQ = kPPP .
There exist various algorithms to perform a scalar multiplication. One of the
most common methods is the double-and-add (or left-to-right binary method)
algorithm. It performs a double operation for every bit of the scalar but performs
an addition only if the bit is 1. No addition is performed if the bit is 0. This fact
makes such an implementation very efficient but provides information of the
secret scalar in physical side channels [15, 18]. By analyzing the running time
or the power consumption of the double-and-add implementation, an adversary
might identify the value of the scalar which makes an implementation weak in
terms of side-channel attacks.

Another scalar-multiplication method resistant to many implementation at-
tacks is the Montgomery powering ladder [22]. Next to the fact that it prevents
many attacks due to its regular structure, it allows the computation of group
operations without y-coordinates [14]. The entire scalar multiplication can be
performed with x -coordinate only operations. This further reduces the memory
requirements of our implementation. The Montgomery powering ladder is shown
in Algorithm 1 where n denotes the bit size of the prime field, i.e. 192. The point
PPP gets multiplied by the scalar k resulting in the pointQQQ. All operations are per-
formed with co-Z coordinate representation [20, 16, 5, 10]. That means that all
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points on the elliptic curve share a common coordinate, i.e. Z, which requires to
store only three (instead of four) variables throughout the Montgomery ladder.

We applied the formulae of M. Hutter et al. [10] to perform a scalar multipli-
cation. The proposed formulae have been especially designed for low-resource de-
vices and perform all operations out-of-place which reduces the memory require-
ments by one temporary register. We applied Algorithm 5 (cf. [10]), needing ten
multiplications, five squarings, and sixteen additions (including subtractions)2

to perform a (differential) addition and doubling operation. We allocated eight
intermediate variables of twelve words each (thus needing 192 bytes of RAM3

only for the scalar multiplication). In order to keep the memory requirements
to a minimum, we decided to reuse four of these intermediate variables also for
other operations of the framework.

Due to the high energy costs of a scalar multiplication, we decided to monitor
the energy budget during this operation to increase the reading range. There-
fore, after each scalar-multiplication iteration a check of the power supply is
performed. Thus, the available energy is tested 190 times for one Montgomery-
ladder execution. If needed the device is put into sleeping mode to recover en-
ergy.

5 Results

In the following, we present experimental results of our ECC framework suitable
for WISP. All implementations have been compiled using the IAR Assembler
v5.10.4 and the IAR C/C++ Compiler v5.10.6 [Kickstart LMS] that have been
configured for low optimization. As stated in Section 4, we provide results of two
different ECC implementations. One that has been optimized for WISP tags
that feature an MSP430 with no hardware multiplier and one implementation
for WISP tags with an MSP430 that supports a hardware multiplier. For a fair
comparison of the two implementations, we omitted the EPC Gen-2 protocol
implementation for all simulations. On the one hand we used the MSP430F233
microcontroller as a device that features a hardware multiplier, and on the other
hand we used the MSP430F2132 that is assembled on the WISP4.1DL tag.
To obtain practical results for the WISP4.1DL, the existing firmware has been
flattened to allow a running system containing the EPC class-1 Generation-2
protocol as well as the ECC framework.

Most effort in optimizations have been put into the finite-field multiplication
and squaring operation. As a multiplication method, we implemented the hybrid
method as described in Subsection 4.2. Table 1 shows the amount of required
clock cycles for multi-precision multiplication and squaring as a function of the

2 The multiplication with the curve parameter b (or 4b) has been realized by a normal
multiplication. Multiplication with a has been realized by two additional additions.

3 Note that the memory requirements can be further reduced to only 168 bytes (cf.
Algorithm 4 in [10]). However, this would increase the runtime complexity to twelve
multiplications, four squarings, and sixteen additions.
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Table 1. Performance of 192-bit multi-precision multiplication and squaring.

System setting Multiplication (a · a) Squaring (a2)
[Cycles] [Cycles]

WISP without HWM (d = 1) 25,350 14,361

WISP with HWM (d = 1) 5,046 3,363

WISP with HWM (d = 2) 2,581 -

different system settings. As it was expected, the worst case is the setting with-
out hardware multiplier and the parameter d = 1 of the hybrid-multiplication
method. The performance can be improved significantly by using a device with
hardware multiplier (about 90 % improvement). We have to mention that the
implementation of the hybrid-multiplication method with d = 1 has not been
optimized for usage with hardware multiplier. So there is still a lot of room for
optimizations by specially fitting the hybrid-multiplication method to devices
that feature a hardware multiplier. As it can be seen in Table 1, the amount of
required clock cycles for a multi-precision multiplication can roughly be halved
by applying loop unrolling and using d = 2. Nevertheless, this optimization is
not always practicable as the code size increases significantly as shown in Ta-
ble 2. The increase in code size is caused by the loop unrolling when applying
d = 2.

Another improvement can be achieved by introducing squaring (a2) instead
of multiplication (a · a). If no hardware multiplier is available, the number of
clock cycles can be reduced roughly by the factor 1.7 to the cost of an increased
code size. This enormous improvement compared to the implementation of H.
Cohen et al. [3] can be explained by the high costs of partial product calcu-
lations. For the system settings with hardware multiplier the improvement is
less significant as the major improvement through the use of the hardware mul-
tiplier itself. So if a computation of the partial products for a multi-precision
multiplication is relatively expensive, usage of squaring is recommended because
the advantage of clock-cycle reduction outweighs the drawback of an increased
code size. Since squaring does not provide a major improvement in running time
when compared to the hybrid-multiplication method with d = 2, squaring has
not been implemented for this system setting.

Table 2. Flash-memory requirements of the multi-precision arithmetic implementation
with and without dedicated squarer.

System setting Code size without Code size with
dedicated squarer dedicated squarer

[Bytes] [Bytes]

WISP without HWM (d=1) 1,076 1,572

WISP with HWM (d=1) 1,020 1,376

WISP with HWM (d=2) 4,236 -
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Table 3. Performance of one 192-bit scalar multiplication using the Montgomery ladder
running on different WISP-tag settings.

System setting Without squaring With squaring
[Cycles] [Cycles]

WISP without HWM (d = 1) 63,257,925 54,630,581

WISP with HWM (d = 1) 17,376,758 15,761,884

WISP with HWM (d = 2) 10,289,883 -

The optimizations described before have been applied on the lowest imple-
mentation level. As expected and shown in Table 3, the support of a hardware
multiplier provides best performance for the scalar multiplication. If no hard-
ware multiplier is available, a squaring implementation is recommended on the
WISP tag as it reduces the amount of clock cycles from 63,257,925 to 54,630,581.
Thus, up to 107 clock cycles can be saved. Furthermore, it shows that the best
performance has been obtained by using a hardware multiplier in combination
with the hybrid-multiplication method with parameter d = 2. This setting is
about six times faster than the fastest method without hardware multiplier.

We simulated the entire 192-bit scalar multiplication using the Montgomery
powering ladder. It needs about 5.5 · 107 clock cycles on the WISP4.1DL plat-
form. This corresponds to 8.3 seconds on the WISP running at a clock fre-
quency of 6.7 MHz. Running at this clock frequency—which actually is the high-
est frequency feasible for succeeding the scalar multiplication with our hardware
setup—the maximum distance to the reader is about 2 centimeters. Although
the power supply is tested after each Montgomery-ladder round, the scalar mul-
tiplication will not finish at distances further than the 2 centimeters as one round

Table 4. Memory requirements of the WISP tag for different framework-level imple-
mentations.

Framework level of Code Const Data
WISP without HWM [Bytes] [Bytes] [Bytes]

Multi-precision arithmetic 1,572 0 0

Finite-field arithmetic 2,532 0 96

ECC arithmetic 3,944 210 176

Framework level of Code Const Data
WISP with HWM (d = 1) [Bytes] [Bytes] [Bytes]

Multi-precision arithmetic 1,376 0 0

Finite-field arithmetic 2,346 0 96

ECC arithmetic 3,758 206 326

Framework level of Code Const Data
WISP without HWM (d = 2) [Bytes] [Bytes] [Bytes]

Multi-precision arithmetic 4,236 0 0

Finite-field arithmetic 5,206 0 96

ECC arithmetic 6,618 206 326
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Table 5. Memory requirements on the WISP tag for additional framework modules.

Module Code Const Data
[Bytes] [Bytes] [Bytes]

SHA-1 hash function 1,012 30 10

Random Number Generation (RNG) 218 0 4

Modified EPC Class 1 Gen 2 protocol 3,260 66 181

exceeds the number of cycles which can be processed with the power available
at this distance. If reading ranges larger than the 2 centimeters are necessary,
either the clock frequency can be reduced which leads to a longer computation
time or an additional capacitor can be assembled on board. Reducing the clock
frequency from 6.7 MHz to 6.1 MHz results in a computation time of 9.1 seconds
and a maximum distance to the reader of 10 centimeters. Correspondingly, a fre-
quency of 3.98 MHz leads to 13.9 seconds and a frequency of 0.98 MHz leads to
56.2 seconds at a maximum distance of 40 cm. If the MSP430F2132 is replaced
with the MSP430F233 and the adaptions for supporting the hardware multiplier
are applied, the total number of clock cycles can be reduced by the factor of 5
which results in an estimated computation time of about 1.6 seconds at 6.7 MHz.

Table 4 presents an overview of the required code size for the different system
settings. All configurations except the configuration with the hardware multiplier
and d = 2 support squaring. The code size of the additional framework modules
is listed in Table 5.

5.1 Comparison with Related Work

There exist several publications about ECC implementations on the MSP430
family of microcontrollers [6, 7, 26, 17, 28]. Most of the related work make use of
the dedicated hardware multiplier that is integrated in many MSP430 archi-
tectures. The work of J. Guajardo et al. [7], for example, implemented ECC
on the TI MSP430x33x microcontroller. Using an elliptic curve over Fp128 they
could accomplish a scalar point multiplication in 3.4 seconds at a frequency of
1 MHz. The TI MSP430x33x family features 24 KB or 32 KB of flash memory
and 1,024 KB of RAM. In addition, they provide a 16 × 16-bit hardware mul-
tiplier. For a multiplication of two 128-bit operands, only 64 partial products
instead of 144 partial products have to be calculated when multiplying two 192
bit operands. Subtraction, addition, and comparison operations also require cor-
respondingly less cycles to complete. As a scalar multiplication method, they
applied the double-and-add algorithm.

6 Conclusion

In this paper, we presented practical results of an elliptic curve cryptography
(ECC) framework that runs on the Wireless Identification and Sensing Plat-
form (WISP). In order to meet the low-resource requirements of that passively
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powered UHF RFID tag, we made several optimizations on arithmetic, algorith-
mic, and implementation level. We provided results for WISP tags with hard-
ware multiplier such as it is in the case for the WISP4.1DL tag and also for
WISP tags which feature a dedicated hardware multiplier, e.g. the MSP430F233
microcontroller. The implementation showed that a scalar multiplication using
the Montgomery powering ladder can be performed within 8.3 seconds on the
WISP4.1DL tag. The same operation can be performed within 1.6 seconds on
the MSP430F233 which is an increase of about 80 %. Furthermore, it showed
that a dedicated squaring implementation on the WISP4.1DL improves the per-
formance by about 14 %. Our results show the feasibility of ECC on the WISP
while providing a proof of concept demonstrator for future RFID protocols and
applications.

As a future work, we plan to evaluate the new generation of WISP tags which
provide a Complex Logic Programmable Device (CLPD) on board. This allows to
out-source individual operations which can help to reduce the memory require-
ments and also to improve the performance of ECC implementations. Further-
more, we plan to use the ECC-enabled WISP to evaluate new privacy-preserving
authentication protocols. They can be also used to analyze the resistance of such
implementations to common attacks.
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