

EVALUATING A NEW MAC FOR CURRENT AND NEXT GENERATION RFID

A Thesis Presented

by

SERGE ZHILYAEV

Submitted to the Graduate School of the

University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL AND COMPUTER ENGINEERING

February 2010

Department of Electrical and Computer Engineering

© Copyright by Serge Zhilyaev 2010

All Rights Reserved

EVALUATING A NEW MAC FOR CURRENT AND NEXT GENERATION RFID

A Thesis Presented

by

SERGE ZHILYAEV

Approved as to style and content by:

Wayne P. Burleson, Chair

Kevin Fu, Member

Andras C. Moritz, Member

__

C.V. Hollot, Department Head

Department of Electrical and Computer Engineering

To my parents.

v

ACKNOWLEDGMENTS

 First and foremost, I would like to thank Professor Wayne Burleson for providing me

with an opportunity to experience this journey and for all of his advice and support. I would

also like to thank Professors Wayne Burleson, Kevin Fu, and Andras Moritz for their service

on my committee. Thanks to Professor Christof Paar for his invaluable advice and words of

encouragement. I would like to thank my family and friends for their support throughout my

academic career. I thank the entire VLSI Circuits and Systems group as well as the RFID-

CUSP group for their advice and assistance. Special thanks to Jinwook Jang, Basab Datta,

and Mike Todd.

vi

ABSTRACT

EVALUATING A NEW MAC FOR CURRENT AND NEXT GENERATION RFID

FEBRUARY 2010

SERGE ZHILYAEV

B.S., UNIVERSITY OF MASSACHUSETTS AMHERST

M.S.E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Wayne Burleson

Pervasive computing is an emerging technology in which inexpensive devices are

used in a variety of applications which include authentication, identification, and micro

payments. These systems need protection from malicious users but often are too constrained

for traditional security algorithms. As a result, new algorithms dubbed lightweight have been

proposed. We evaluate one such algorithm called SQUASH [1] and propose changes that

reduce both area and latency. Our proposed changes take advantage of the underlying

squaring operation in SQUASH. We also show that aggressive over minimization of the

adder in [1] results in the addition of an auxiliary register that is used to store state: the cost

of which is much greater than a more complex adder. By using a different adder architecture

and taking advantage of the associative property of addition, we can eliminate the auxiliary

register and decrease latency; resulting in an area reduction of 17 % and a latency reduction

of 50 %.

To reduce area and latency further, we propose a new variant which we call permuted

vii

SQUASH (PSQUASH). The new variant eliminates the duplicate NLFSR found in

SQUASH by using a static permutation to reorder the NLFSR output before the squaring

operation. PSQUASH retains the formal proof of security of SQUASH, but is significantly

smaller. The smallest configuration of PSQUASH is synthesized in 1624 GE (gate

equivalents). While our proposed changes to the hardware implementation of PSQUASH

offer a sizable improvement over published work in both area and latency, the design may

still be prohibitive for some applications mainly due to relatively high latency. The small size

of PSQUASH still makes the hardware approach attractive when latency is not an issue; for

example, PSQUASH can be a good fit for access control or authentic replacement parts.

Adi Shamir proposes that SQUASH may be best suited for next generation RFID tags

because it can be scaled to arbitrary precision. We explore SQUASH on an embedded

platform and show that the benefit of a wider ALU is negated by the inefficiency of NLFSR

shifts in software. We provide a method to select a partial product ordering to minimize

NLFSR shifts for any SQUASH configuration.

viii

TABLE OF CONTENTS

ACKNOWLEDGMENTS .. v

ABSTRACT ... vi

LIST OF TABLES .. x

LIST OF FIGURES ... xi

CHAPTER

1. INTRODUCTION .. 1

1.1 Motivation ... 1

1.2 SQUASH for RFID ... 2

1.3 RFID Tags and Related Resource Constrained Devices................................... 3

1.4 Thesis Outline ... 5

2. A NEW MAC FOR RFID... 6

2.1 Introduction ... 6

2.2 A New MAC for RFID ... 6

2.3 Sequence Generators ... 8

2.4 SQUASH Architecture Using Successive Convolutions 9

2.5 Optimizing SQUASH for Squaring .. 11

2.6 Synthesis Results .. 15

3. SQUEEZING SQUASH ... 17

3.1 Introduction ... 17

3.2 SQUASH with a Single NLFSR ... 17

3.3 A Single NLFSR SQUASH Proposal ... 18

3.4 Permuted SQUASH .. 20

ix

3.5 Synthesis Results .. 23

4. SQUASH ON COMPUTATIONAL RFID .. 25

4.1 Introduction ... 25

4.2 The WISP .. 25

4.3 SQUASH on the WISP ... 27

4.4 Efficient Software SQUASH .. 30

4.5 Best Case SQUASH Performance on CRFID .. 34

5. CONCLUSIONS... 36

5.1 Practical Applications for PSQUASH .. 36

5.2 Comparing SQUASH and PSQUASH to Hashes Constructed from Symmetric

Ciphers .. 37

5.3 Our Contribution ... 38

BIBLIOGRAPHY ... 41

x

LIST OF TABLES

TABLE PAGE

1. Synthesis results. ... 16

2. Synthesis results with PSQUASH added. ... 24

3. SQUASH and RC5 specs on 3V WISP. ... 30

xi

LIST OF FIGURES

FIGURE PAGE

1. SQUASH is simple challenge-response.. 7

2. A linear (left) and non-linear (right) feedback shift register. .. 9

3. NLFSR position needed to generate m. .. 10

4. SQUASH architecture proposed in [1]. .. 11

5. A modified adder using decoders to shift the partial product. .. 13

6. Adder width can be varied with individual register enable signals. 13

7. Dual bit (left) and single bit (right) SQUASH with the two proposed adders. 14

8. The NLFSR only contains a window of the entire sequence. ... 18

9. A single NLFSR design proposed in [1]. .. 19

10. PSQUASH adds a permutation to the flow... 20

11. An example permutation for k = 1277, 32 output bits, and 16 guard bits. 21

12. A PSQUASH design. .. 23

13. First Generation WISP. ... 26

14. WISP power cycle. Charge is gathered during sleep mode and discharged during

computation and communication. ... 27

15. WISP Power trace when computing and transmitting SQUASH packet. Blue trace is

voltage and yellow trace denotes computation. WISP distance from reader, from top left to

bottom right: 6", 12", 24", 30". ... 28

16. WISP power traces for static ID. Blue trace is capacitor voltage and yellow trace is

computation of packet (static ID is nearly instant). Distance from reader from top left to

bottom right: 2', 3', 4', 5' .. 29

17. Row wise (left) and column wise (right) ordering. ... 31

18. First three columns and rows of a partial SQUASH computation. 33

file:///C:/Users/serge/Documents/Thesis/EVALUATING%20A%20NEW%20MAC%20FOR%20CURRENT%20AND%20NEXT%20GENERATION%20RFID.docx%23_Toc247191922
file:///C:/Users/serge/Documents/Thesis/EVALUATING%20A%20NEW%20MAC%20FOR%20CURRENT%20AND%20NEXT%20GENERATION%20RFID.docx%23_Toc247191932
file:///C:/Users/serge/Documents/Thesis/EVALUATING%20A%20NEW%20MAC%20FOR%20CURRENT%20AND%20NEXT%20GENERATION%20RFID.docx%23_Toc247191932

1

CHAPTER 1

INTRODUCTION

1.1 Motivation

Radio frequency identification (RFID) tags are highly constrained devices capable of

limited computation. As the name suggests, a common purpose of these devices is to provide

identification. For example, Electronic Product Code (EPC) [2] Ultra High Frequency (UHF)

RFID tags may replace the barcode or Universal Product Code (UPC). While the familiar

barcode is still on consumer products, RFID integration into retail stores is evident with Wal-

Mart’s adoption of RFID systems for inventory tracking [3]. RFID tags are often embedded in

credit cards and other payment methods, like micro payment cards. They are used in access

cards, passports, and can be implanted into animals for tracking. RFID tags for medical supplies

can save lives by reducing human error in hospitals, and RFID tags can be an effective tool in the

fight against counterfeiting. Many exciting applications have been proposed for these devices

and this technology continues to expand its impact on our lives.

Unit cost per tag is a major consideration for RFID tags because some applications need

low cost tags to be feasible. Cost may be a secondary consideration in passports or credit cards

because security is paramount and these devices may pass that cost on to the consumer without

much concern. In an application like product tagging, cost is paramount, and the cost per tag

needs to be low; otherwise, the benefits of RFID are outweighed by the cost. Securing RFID

tags and providing privacy in consumer applications, while limiting cost per tag, has been the

focus of much academic work. Due to the constraints on memory, power consumption, and

2

amount of logic on RFID devices, standard cryptographic primitives are often unsuitable. This

has led to a new class of cryptographic primitives and protocols that have been dubbed

lightweight crypto, which are designed with resource constraints in mind.

Some of the first lightweight crypto work reduced the size and power consumption of

standard algorithms like AES or DES by serialization or other techniques [4, 5]. Works like

PRESENT [6] and the steam cipher competition eSTREAM [7] took lightweight cryptography

further by designing new ciphers for resource constrained devices. Lightweight message

authentication codes (MAC), or authentication schemes in general, have not received as much

attention as symmetric ciphers; although, using symmetric ciphers for authentication has been

proposed [4]. The HB protocol and its variants [8, 9, 10, 11], which are based on the solving

parity with noise problem, are a lightweight authentication scheme but have several drawbacks

[1]. A recent proposal called SQUASH [1] is a simple challenge response MAC for RFID.

SQUASH focuses on providing authentication and does not preserve privacy; however, it does

not require a source of randomness on the tag or a heavy computationally load on the backend.

1.2 SQUASH for RFID

 SQUASH has several advantages and one big disadvantage over other authentication

methods for RFID. Many lightweight authentication methods that have been proposed are only

resistant against a passive adversary. Active attacks against the HB schemes and [12, 13] have

exposed vulnerabilities. Many of the proposed methods shift computational workload to a

backend server, which can expose them to a man in the middle attack [14]. Many RFID

authentication schemes are tailored to the supply chain applications which can expect to have a

centralized system with backend server support; however, the backend server requirement itself

3

can be a disadvantage because it may not be practical or even available for all applications.

While SQUASH requires a shared secret between the reader and key, it does not require a

backend server to perform calculations or exhaustive searches.

 SQUASH does not require the tag to generate any random bits. RFID tags generally do

not have a true random number generator (TRNG) and many authentication protocols require a

large number of high quality random bits. Random number generators on RFID tags are usually

weak pseudorandom stream generators whose purpose is for collision avoidance in the

communication protocol. This means that if an authentication scheme needs TRNG, it must be

added to the tag.

 SQUASH does have two major drawbacks which are higher area and potentially higher

latency. Without going into details, the SQUASH architecture is much more complex than other

lightweight RFID authentication schemes. Other authentication schemes shift the computational

load onto a backend server, which minimizes the resources required by the tag. SQUASH can be

deployed without backend server support but this requires greater tag resources. Unlike

probabilistic authentication schemes such as HB, which require multiple queries to the tag,

SQUASH only requires a single query; however the response takes thousands of cycles for the

SQUASH designs explored in [15], which is a major drawback. This thesis evaluates and

improves SQUASH for current and next generation RFID by reducing area and latency.

1.3 RFID Tags and Related Resource Constrained Devices

 In this thesis we use RFID and resource constrained device interchangeably. This work

can apply to any resource constrained device but sometimes we focus on RFID. We believe

these devices are especially positioned to become the dominant resource constrained device

4

deployed in the future. Some general classes of RFID tags and other resource constrained

devices are briefly described in this section.

Low Frequency (LF) tags operate in the 125–134.2 kHz and 140–148.5 kHz

range and work by inductive coupling.

High Frequency (HF) tags (13.56 MHz) also use inductive coupling.

Ultra-High Frequency (UHF) tags operate in the 868–928 MHz range; and

unlike LF or HF tags, UHF tags use backscatter to communicate with the reader.

They also have increased read range but can be unreliable in certain environments

because the signal may be reflected by metal objects or absorbed by water.

Microwave tags further increase read range; however these tags are almost

exclusively battery assisted. Automobile toll collection is a common application

for these tags.

Passive tags do not have a battery; instead they harvest power from the reader’s

radio signal.

Active tags have a battery; which increases the read range and capability of these

devices over their passive counterparts, but drives up costs.

5

Contactless Smartcards do not use a wireless channel for communication.

Physical contact is required to communicate with the device.

1.4 Thesis Outline

 A SQUASH implementation on FPGA was published in [15]; which concluded that while

SQUASH consumed a large area, an ASIC implementation may be more competitive. In this

thesis we synthesize SQUASH as an ASIC implementation. We find that in addition to its

inherent high latency, SQUASH consumes more area than other lightweight primitives. In

chapter two we introduce SQUASH and show that it can be improved by optimizing for

squaring. In chapter three we propose a new variant we call PSQUASH, which achieves further

reduction in area and latency. Chapter four explores SQUASH on embedded microprocessors.

The final chapter draws conclusions and discusses the practical applications of SQUASH.

6

CHAPTER 2

A NEW MAC FOR RFID

2.1 Introduction

Some applications require the ability to authenticate a RFID tag. Anti-counterfeiting

tag’s main task is to authenticate a product; for example, a cell phone replacement battery can

benefit from an anti-counterfeiting tag. If the cost of the tag is minimal, a cell phone

manufacturer can embed a tag into the battery and be able to detect if a replacement battery is

authentic. Since replacement parts are often a significant portion of revenue, the manufacturer

can ensure its own battery is used by detecting competitors’ batteries and draining them faster

than its own product. Anti-counterfeiting for replacement parts or to authenticate brand names

are one application, others include access cards, passports, and micro payment cards.

There are a multitude of existing applications, which require the ability to authenticate a

tag, and new applications are likely to emerge; however there are few authentication schemes for

RFID. A new proposal, SQUASH or “SQUare-hASH” by Adi Shamir [1] is a challenge

response MAC for RFID. SQUASH does not require a source of randomness on the tag and is

scalable to arbitrary word size. Unlike other authentication schemes SQUASH has a formal

proof of security [1].

2.2 A New MAC for RFID

 SQUASH [1] is a challenge-response MAC proposed by Adi Shamir. The idea behind

SQUASH is to create a hash function that is not necessarily collision resistant, because collision

7

resistance is costly. This makes SQUASH unsuitable for digital signatures but it is still an

effective challenge-response MAC [1]. SQUASH does not require the tag to produce any

random bits unlike the HB authentication scheme or its variants [8, 9, 10, 11], and has a formal

proof of security based on Rabin’s public key cryptography algorithm [16]. Given a shared

secret S between the reader and tag, and a random challenge R from the reader; the tag returns

[m
2
 mod n]{i + l .. i} where n is of the form 2

k
 - 1, m is a k - 1 bit value generated by a non-linear

feedback shift register (NLFSR) seeded with (R xor S), i is the chosen lsb of the hash output, and

l is the chosen hash length which can be 32, 64, or 128 bits.

Random Challenge (R)

SQUASH(R, S)

Figure 1: SQUASH is simple challenge-response.

 At the heart of SQUASH is the well studied Rabin cryptosystem, which provides the one

way property used to hide the secret S. This may seem unlikely at first since modular

exponentiation is computationally expensive, and a poor choice for the resource constrained

RFID. In addition to being computationally expensive, the recommended bit length for the

modulus n is at least 1024 bits; this number alone is beyond the storage capacity of most RFID

tags. To tailor SQUASH to RFID, several key adjustments are made which allow SQUASH to

keep the formal proof of security of Rabin’s cryptosystem while conforming to the constraints of

RFID.

 First, do not store the modulus n; instead, use a Mersenne number like 2
1227

 – 1. [1]

proposes several suitable moduli. Using a Mersenne number eliminates the need to store n and

8

simplifies the modular operation because 2
k
 = 1 mod n when n = 2

k
 -1 e.g. when n = 2

k
 -1, m

2
 =

m1 * 2
k
 + m2 then m

2
 = m1 + m2 mod n. Second, use a subset of c = m

2
 mod n as hash output

from the center of c. This can be closely approximated by computing eight to sixteen guard bits

[1]. The exact carry in would require the entire result of m
2
 but [1] argues that approximating

the carry with eight to sixteen guard bits is sufficient to be indistinguishable from the exact

result. Finally generate m on the fly using a NLFSR. Summarizing the key points:

 Do not store modulus n, instead use a Mersenne number like 2
1277

 - 1

 Output a subset of m
2
 mod n as hash of m

 Generate m on the fly using a reversible non-linear feedback register

SQUASH can be computed using successive convolutions. To compute thirty-two bit

length SQUASH with n = 2
1277

 - 1 [1] proposes the following algorithm:

 Algorithm 1: SQUASH using successive convolutions [1].

a. Set j = 600 and set carry = 0

b. Compute carry = carry + mv * mj-v mod k for v = 0,1,...,1276

c. Set cj = lsb(carry), carry = rightshift(carry)

d. Repeat steps b and c 48 times, and output the 32 bits c[647 .. 616]

2.3 Sequence Generators

 SQUASH uses a sequence generator to expand a seed into a larger sequence that is then

used as m in c = m
2
 mod n. One of the most simple sequence generators is a linear feedback shift

register (LFSR) show in figure 2. A LFSR can be constructed using a maximal polynomial which

will iterate through all 2
n
 - 1 states (where n is the width of the LFSR) excluding the zero state.

9

The design of a LFSR is minimal and only consists of exclusive-or gates at the taps (which are

the positions where the feedback polynomial coefficients are non zero.) While a LFSR meets the

desired criteria of minimal hardware, it is not a good candidate for SQUASH because the

sequence produced is linear. The authors in [17] show that SQUASH can be broken when a

linear sequence generator is used; therefore, SQUASH uses a non-linear sequence generator.

Figure 2: A linear (left) and non-linear (right) feedback shift register.

The suggested NLFSR for SQUASH is the non-linear portion of the Grain steam cipher

[18]. The feedback function is a sum modulo two of a linear and a quadratic bent function with

the following feedback polynomial g(x):

g(x) = 1 + x
17

 + x
20

 + x
28

 + x
35

 + x
43

 + x
47

 + x
52

 + x
59

 + x
65

 + x
71

 + x
80

 + x
17

x
20

 + x
43

x
47

 + x
65

x
71

+ x
20

x
28

x
35

 + x
47

x
52

x
59

 + x
17

x
35

x
52

x
71

 + x
20

x
28

x
43

x
47

 + x
17

x
20

x
59

x
65

 + x
17

x
20

x
28

x
35

x
43

+ x
47

x
52

x
59

x
65

x
71

 + x
28

x
35

x
43

x
47

x
52

x
59

2.4 SQUASH Architecture Using Successive Convolutions

 A hardware SQUASH implementation using Algorithm (1) must address the modular

operation on the position of the NLFSR. While a single copy of the NLFSR is sufficient to

produce the sequence m: at least two NLFSR copies are required because the multiplier and

multiplicand are – on average – k/2 shifts apart and m is not stored in memory. Using two copies

10

of NLFSR state addresses the spatial difference between the multiplier and multiplicand, but

does not solve the modular position issue. Figure 3 illustrates NLFSR position through several

convolutions. NLFSR1 generates the multiplicand value which cycles from [0 .. k - 1] inclusive.

NLFSR2 generates the multiplier which wraps around from the zero position to the k - 1

position. This wrap around, or modular operation on the NLFSR position, results in cycles

dedicated to aligning the NLFSR to the proper position which we call alignment shifts.

Figure 3: NLFSR position needed to generate m.

 If only two copies of NLFSR state are maintained, alignment shifts will double latency,

because every convolution requiring k cycles will also require k alignment shifts. The authors in

[1, 15] address this issue by using an auxiliary register to store states that correspond to breaks in

the otherwise continuous lines in figure 3. This approach adds significant area overhead by

adding an eighty bit register, as well as multiplexors and exclusive-or gates to switch values

between the auxiliary register and NLFSRs; however this scheme reduces alignment shifts to k.

The k alignment shifts are incurred at the initialization step. After the initialization step, the

auxiliary register holds the state needed by the each NLFSR to eliminate additional shifts.

Figure 4 shows the proposed design in [1, 15].

11

2.5 Optimizing SQUASH for Squaring

 Using successive convolutions to compute SQUASH is essentially column wise or

Comba method multiplication [19] with a column width of a single bit. This reduces carry

propagation to a minimum and allows a twelve bit accumulator to suffice. Since squaring is the

underlying operation, it would be beneficial to optimize for squaring. For each bit computed by

Algorithm (1), k partial products are generated; however, only half are unique. The multiplier a

and multiplicand b are identical; therefore ai * bj = aj * bi. Reducing partial product generation

can be achieved by computing all unique partial products and shifting repeated partial products

by one.

 Optimizing for squaring has the potential to reduce the number of addition operations by

a factor of two; however, it cannot be directly used with the architecture in [1, 15]. After the

initialization step requiring k alignment shifts, the NLFSRs combined with the auxiliary register

80 bit NLFSR 1

80 bit NLFSR 2

8
0

 b
it X

O
R

12 bit
accumulator 80 bit auxiliary register

Figure 4: SQUASH architecture proposed in [1].

12

generate the bits needed to compute each partial product in order. These shifts also align the

three state registers for the next convolution; therefore, grouping like terms using this

architecture would reduce the number of additions per bit but proportionately increase the

number of shifts needed to align the NLFSRs.

 To optimize SQUASH for squaring recall that m
2
 = m1 * 2

k
 + m2, then m

2
 = m1 + m2 mod

n when n = 2
k
 -1. When computing SQUASH using successive convolutions, each bit of m1 + m2

is computed together. This does not allow any optimization for squaring because shifting the

NLFSRs to the proper positions when moving between m1 and m2 negates the benefit of the

optimization. The NLFSRs only need to be aligned when computation switches between m1 and

m2; as a result, optimizing for squaring provides the most benefit if m1 or m2 is computed entirely

before computing the other and no benefit if computation alternates between m1 and m2 for each

bit of m
2
.

 A more complex adder is required to take advantage of the underlying squaring

operation. The adder width can be less than the width of m; the tradeoff is more alignment shifts.

We recommend an adder width of thirty-two, which gives up to a twenty bit window before

overflow becomes a concern and the adder must be shifted (for single bit precision). For the

most significant bits, overflow is not a concern and the adder length should shrink as

computation approaches this point. The adder must be able to operate on any bit position and

properly handle overflow. Figures 5 and 6 show two adder designs which fit these criteria.

13

bi

ci-1

Decoderi

XOR

32 – bit Accumulator

32 6:1 Decoders

5

32

Shift positions

(from FSM)

Partial product

ci

Figure 5: A modified adder using decoders to shift the partial product.

 Figure 5 shows a suitable adder for single bit precision SQUASH. An individual adder

cell is shown, which is a half adder with an additional or gate before the carry in. The decoders

shift the partial product to the appropriate column: effectively varying the width of the adder

from one to thirty-two bits. The control signals for the decoder are efficiently generated because

the FSM already contains a counter that corresponds to the current column in the squaring

operation. The adder is enabled by combining the enable signal with the partial product with an

and gate. This is possible since an addition of zero does not change the stored value. The figure

does not show the shift connections between adder registers.

32

enable signals (from FSM)

2x2 MUL

FA HAFA FAHAHA

32 shift reg with feedback

Figure 6: Adder width can be varied with individual register enable signals.

 Full adders can be minimized for SQUASH with multiple bit precision as shown in figure

6. The partial products are aligned by shifting the register bits and the adder width can be

14

adjusted with enable signals. This approach can be used for arbitrary precision. The architecture

for squaring optimized SQUASH is shown in figure 7 and consists of two NLFSRs and the

adder. For single precision: either adder can be used. Multiple bit precision requires the adder

from figure 6. The adder complexity and FSM complexity is increased but the auxiliary register

and circuitry to switch state between the auxiliary register and NLFSRs is eliminated.

80 bit NLFSR 2

80 bit NLFSR 1

32

enable signals (from FSM)

22

2x2 MUL

FA HAFA FAHAHA

32 bit shift reg with feedback

80 bit NLFSR 2

80 bit NLFSR 1

32 bit Accumulator

32 6:1 Decoders

5

current round (from FSM)

32

Figure 7: Dual bit (left) and single bit (right) SQUASH with the two proposed adders.

 The squaring optimized SQUASH uses the same column method to compute SQUASH

except partial products that are reoccurring are only computed once. The adder allows

reoccurring partial products to be shifted left. The optimized SQUASH runs as follows. First

both NLFSRs are seeded and run for 256 cycles to obfuscate the seed value. Next both NLFSRs

run to the position corresponding to the non-reoccurring partial product in the first guard bit; this

completes the initialization step. From this point the FSM cycles through all the partial products

in alternating order for m1, until a chosen point is reached: which is before risk of overflow

15

(recall m
2
 = m1 + m2 mod n). The NLFSRs are adjusted for m2 and the same method is used to

compute the partial result of m2, up until the risk of overflow point. At this step the adder is

shifted right, as in Algorithm (1), until the lsb of the adder corresponds to the current column.

After the adder shift, computation of m2 resumes until the new risk of overflow point: at which

the NLFSRs are aligned again, and computation of m1 resumes. This cycle is repeated until the

entire result is computed.

2.6 Synthesis Results

 Table 1 shows synthesis results for non-optimized SQUASH as well as squaring

optimized SQUASH for single and dual bit precision. All designs are thirty-two bit output with

sixteen guard bits. Synthesis and power simulation was done with Synopsys Design Vision. A

virtual standard cell library was used based on UMC 130 nm process which was obtained from

Faraday [20]. For area comparisons, we also synthesized Grain-80 which is one of the smallest

cryptographic primitives. The Grain-80 description was VHDL and was obtained from

OpenCores [21]. All our descriptions were written in Verilog. The clock was set to 100 kHz.

 As shown in table 1, optimized SQUASH has a clear advantage over the non-optimized

design. The twelve bit accumulator used in the non-optimized design is small but does not allow

for squaring optimization. In addition, the added circuitry to reduce alignment shifts adds

significant area pushing the total area higher than the optimized design with the much larger

adder. The optimized design achieves nearly a 50 % reduction in latency; and the third entry, an

optimized design with dual bit precision achieves an 86 % reduction in latency and is smaller

16

than the single bit non-optimized SQUASH. The power numbers are also lower for the

optimized designs.

 Our comparison focuses on thirty-two bit output SQUASH with sixteen guard bits which

uses an eighty bit NLFSR to generate m; but optimized SQUASH is preferable for all

configurations. In the non-optimized design, increasing NLFSR width results in an increase in

area dedicated to the auxiliary register and the supporting circuitry. This register and circuitry is

eliminated in the optimized design and the adder complexity remains unchanged. The optimized

design eliminates approximately half of the partial products; however alignment shifts increase

when output length increases. The increase in latency due to extra alignment shifts is much less

than the decrease due to elimination of repeating partial products; as a result, the optimized

design will outperform the non-optimized design in terms of latency, in addition to having lower

area and power consumption.

Table 1: Synthesis results.

Design Area (GE) Cycles Dynamic Power Leakage Power

Non-Optimized

SQUASH
3169 62.8k 34.8 nW 13.5 nW

Optimized SQUASH 2646 31.8k 24.7 nW 11.0 nW

Dual-bit Optimized

SQUASH
2825 8.6k 23.6 nW 11.8 nW

Grain-80 1391 N/A 22.2 nW 5.6 nW

17

CHAPTER 3

SQUEEZING SQUASH

3.1 Introduction

 Squaring optimized SQUASH achieves a reduction in area but the duplicate NLFSR is

still costly. Reducing SQUASH to one NLFSR would be ideal since the second NLFSR adds no

additional state bits, only area overhead. Of course the reason two copies of state are used in

squaring optimized SQUASH, and three in the original design, is due to NLFSR alignment shifts

dominating latency without the added copies. In order to reduce SQUASH down to a single

NLFSR, the NLFSR would need to produce both multiplicand and multiplier in the same cycle

for each partial product.

 In [1], a concrete SQUASH proposal is discussed to address this issue; however, the

proposal glosses over some key points which add significant area overhead. We discuss this

proposal and introduce our own SQUASH variant which we call permuted SQUASH

(PSQUASH). Our proposed variant achieves the smallest area while greatly reducing alignment

shifts.

 3.2 SQUASH with a Single NLFSR

 If only one NLFSR is used in the example designs from the last chapter, a significant

amount of time would be dedicated to sliding the NLFSR back and forth to obtain the correct

bits. In such a scheme, the designer would want to add additional registers in order to look at a

larger window of bits during each shift. And, if the area·delay product is examined: it becomes

18

clear that the most efficient architecture is another independent window (i.e. another NLFSR).

The additional NLFSR does not enhance security because it uses the same state. Its purpose is

simply to reduce alignment shifts. Figure 8 illustrates this issue.

Figure 8: The NLFSR only contains a window of the entire sequence.

 Removing the additional NLFSR without increasing latency due to alignment shifts

significantly reduces the area and power consumption of SQUASH. Avoiding the penalty of

alignment shifts with a single NLFSR requires that the NLFSR always contains the current

multiplicand and multiplier bits within the current state; as well as the next multiplicand and

multiplier bits contained in the next state, for all states.

3.3 A Single NLFSR SQUASH Proposal

 A single NLFSR SQUASH design is proposed in [1] and shown in figure 9. Adi Shamir

proposed this design for k = 128 which makes n = 2
128

 - 1. The NLFSR is seeded and run for

512 cycles to obfuscate the seed; at which point the NLFSR stops, containing all bits of m since

m is now 128 bits long. The FSM then computes SQUASH, in the same manner as Algorithm

(1), but adjusted to k = 128 and eight guard bits. Adi Shamir claims this design is smaller than

Grain-128. The NLFSR is the non-linear portion of Grain-128 which like the Grain-80 NLFSR

19

is a sum modulo two of a linear function and a quadratic bent function with the following

feedback polynomial g(x):

g(x) = 1 + x
32

 + x
37

 + x
72

 + x
102

 + x
128

 + x
60

x
44

 + x
67

x
63

 + x
88

x
80

 + x
101

x
69

+ x
111

x
110

 + x
117

x
115

 + x
125

x
61

128 bit NLFSR

8 bit accumulator

Figure 9: A single NLFSR design proposed in [1].

There are several issues with this proposed design; the first of which is the limited choice

for the modulus n. This design stores m instead of generating it on the fly, which works well

when for k = 128; but as k is increased, the cost of storing m quickly grows to thousands of gates.

Using k = 128 also violates the assumption of a modulus with no known factors; therefore, the

formal proof of security is not applicable. If an attack is devised on SQUASH with a factorable

modulus, this design will not scale for a larger modulus. The second issue with this design is

that it is not as small as [1] claims. The NLFSR is the biggest block in Grain and consumes half

the total area. Selecting each bit from the NLFSR when computing SQUASH, without

20

additional alignment shifts, requires two 128:1 multiplexors (as shown in figure 9). These

structures and the corresponding control circuitry add significant area overhead. When

combined with the counters and FSM complexity of SQUASH, this design is likely to be roughly

the size of Grain-128.

3.4 Permuted SQUASH

 Reducing squaring optimized SQUASH down to a single NLFSR can be achieved with a

static permutation on the NLFSR sequence output: resulting in any pair of multiplicand and

multiplier existing within the NLFSR state. As described above, SQUASH uses a NLFSR to

generate sequence m and computes m
2
 mod n; likewise, permuted SQUASH generates m` using

the same NLFSR structure but then permutes m` into m using a static permutation and computes

m
2
 mod n.

Figure 10: PSQUASH adds a permutation to the flow.

21

The added permutation does not undermine the security proof of SQUASH put forth in

[1]. SQUASH is based on the strength of Rabin’s PKC and this change does not reduce n. It is

important to note that while Rabin’s PCK is not affected by the choice of encrypted message (in

our case NLFSR output m); care must be taken when designing the sequence generator for

SQUASH. The authors in [17] show that SQUASH can be broken when a linear sequence

generator is used to generate m. In this case, we use the same non-linear generator and perform a

linear permutation on the final output which does not destroy non-linearity. This method of

generating m (or in this case m`) does not make permuted SQUASH susceptible to the attack

described in [17].

 An efficient permutation for PSQUASH has two requirements; it must eliminate

alignment shifts, and it should consume less area and power than a duplicate NLFSR. Several

possible permutations were evaluated. The final choice eliminates alignment shifts after the

initialization step, and uses a fraction of the gates required by a duplicate NLFSR. This

permutation can be constructed for any value of k. The permutation is based on the msb of

SQUASH output and is simply the column squaring ordering for the msb. Figure 11 shows the

permutation, which starts with the middle of the m2 column and ends with the middle of m1

column. The resulting mapping has the multiplier and multiplicand bits in an order that is based

on the current round and is fairly efficiently multiplexed. Only one large multiplexor is needed

and the control signals can be generated using circuitry with a fraction of the area cost of a

duplicate NLFSR.

NLFSR 0 1 2 3 … 646 647 648 649 650 651 … 1274 1275 1276

P(NLFSR) 324 323 325 322 … 647 0 648 1276 649 1275 … 961 963 962

Figure 11: An example permutation for k = 1277, 32 output bits, and 16 guard bits.

22

 Figure 11 is color coded to show how the msb of SQUASH output is used to build the

permutation. This permutation is for the SQUASH parameters in Algorithm (1). The green

portion corresponds to the partial products of m2 or as in Algorithm (1) the partial products

computed by mv * mj-v mod k for v = 0, 1, ..., 647. The blue portion corresponds to the partial

products of m1 or as in Algorithm (1) the partial products computed by mv * mj-v mod k for v = 648,

649, ..., 1276. This approach can be used to map any set of SQUASH parameters but it is only

efficient when the NLFSR width does not exceed 2 * (guard + output bits).

 The maximum distance for any two operands is 2 * (guard + output bits); therefore, the

NLFSR length must not be less than the maximum distance to eliminate alignment shifts. With

our example parameters (32 output bits, 16 guard bits), 96 bits of NLFSR must be available in

order to avoid alignment shifts. For the smallest SQUASH output (thirty-two) with only eight

guard bits, an eighty bit NLFSR can be used. This restriction means that some combinations of

NLFSR length and SQUASH output are not suitable for PSQUASH; however, PSQUASH is far

more flexible than the single NLFSR proposal in [1] and places no restrictions on the size of the

modulus. PSQUASH also requires smaller multiplexors than the single NLFSR proposal in [1].

Only one 80:1 and one 2:1 multiplexor is needed in PSQUASH for thirty-two bit output and

eight guard bit configuration; the proposal in [1] requires two 128:1 multiplexors.

 PSQUASH is run by seeding the NLFSR and running for 128 cycles. This number is cut

in half from its SQUASH counterpart, because the NLFSR shifts two bits at a time. An

additional twenty-four cycles are needed to move to the starting position for the lsb, since the

starting position corresponds to the starting position for the msb bit. The number of shifts in this

step is double the sum of output and guard bits. After these initialization steps, the NLFSR is

shifted once per partial product. Each unique partial product is generated without repetition for

23

each output bit: with the non-reoccurring term from the next column generated in the current

column. This ordered generation of partial products without alignment shifts requires a simple

accumulator and is optimized for squaring. This behavior is achieved by selecting the

multiplicand and multiplier using multiplexors. The control signals are generated by an

arithmetic relation with the counters values already required by SQUASH. Figure 12 shows the

design for thirty-two output bits and sixteen guard bits. The NLFSR width and multiplexor

width can be reduced to eighty bits if only eight guard bits are used.

128 bit NLFSR

11 bit accumulator

NLFSR[95:0]
NLFSR[0]

NLFSR[1]

Figure 12: A PSQUASH design.

3.5 Synthesis Results

 We synthesized PSQUASH using two NLFSR sizes, with the design flow described in

the last chapter. The smallest PSQUASH configuration of thirty-two output bits and eight guard

24

bits can use an eighty bit NLFSR and was synthesized with 1624 GE. A 128 bit NLFSR was

used for thirty-two bit output with sixteen guard bits. Both designs are synthesized under 2k GE,

which is a sizable improvement over the non-permuted SQUASH. PSQUASH also consumes

less power than the optimized SQUASH designs and reduces latency by eliminating more

alignment shifts. PSQUASH outperforms SQUASH in all categories. The only disadvantage of

PSQUASH is the restrictions on minimum NLFSR size; however, unlike the SQUASH designs

which need multiple copies of state, PSQUASH adds state bits. A wider NLFSR increases the

security by increasing pre-image resistance. Even if the added state is unnecessary: PSQUASH

outperforms SQUASH.

Table 2: Synthesis results with PSQUASH added.

Design Area (GE) Cycles Dynamic Power Leakage Power

Non-Optimized

SQUASH
3169 62.8k 34.8 nW 13.5 nW

Optimized SQUASH 2646 31.8k 24.7 nW 11.0 nW

Dual-bit Optimized

SQUASH
2825 8.6k 23.6 nW 11.8 nW

128 NLFSR

PSQUASH
1918 30.2k 17.3 nW 8.9 nW

80 NLFSR

PSQUASH
1624 25.1k 18.3 nW 7.7 nW

Grain-80 1391 N/A 22.2 nW 5.6 nW

25

CHAPTER 4

SQUASH ON COMPUTATIONAL RFID

4.1 Introduction

Computation RFID (CRFID) refers to contactless smartcards which operate like

traditional finite state (FSM) machine driven RFID tags, but use an embedded microprocessor

[22]. Electronic product tags and access cards are examples of traditional tags; these tags

perform a set of tasks and are typically on custom silicon. The high non-recurring engineering

cost (NRE) of these devices is absorbed by the incredibly large volumes. CRFID NRE costs can

be significantly lower because development is in software. In addition to lower NRE costs,

CRFID promise to provide the flexibility of general purpose processing to RFID.

Using a microprocessor on a resource constrained device is not a new idea. In fact,

smartcards have used microprocessors like the Intel 8051 for years. While contact smartcards

have used embedded microprocessors for years, contactless smartcards have been predominantly

FSM driven. We believe that embedded microprocessors will become more prevalent in RFID.

SQUASH benefits from these next generation CRFID tags because ALUs and memory address

many of the issues that emerge in a hardware SQUASH implementation.

4.2 The WISP

 The Wirelessly Powered Platform for Sensing and Computation (WISP) [23] is a

prototype platform for CRFID (shown in figure 13). The WISP discussed here is the first

generation model and is a MSP430F1232 microcontroller on a PCB board which adds circuitry

26

that allows the device to harvest power and communicate like a typical UHF tag. The

MSPF1232 is a sixteen bit microcontroller with 256 bytes of RAM and FLASH memory and 8k

bytes of ROM. There is no hardware multiplier, which would be desirable for SQUASH, but it

is still able to run SQUASH on harvested power.

Figure 13: First Generation WISP.

 Power harvested from the UHF reader is insufficient to run the microcontroller on the

WISP. To address this issue, the WISP performs computation in a duty cycle. The

microcontroller cycles between low power sleep mode and active mode, allowing charge to

gather on the capacitor when in sleep mode. Figure 14 shows the voltage on the capacitor as the

WISP charges up and performs computation. The blue trace shows the voltage on the capacitor,

which drops when the microcontroller switches to the active cycle (yellow trace). The stored

charge is regulated to a target voltage of 3.3 V. The microcontroller operates as long as the

voltage on the capacitor does not drop below 3.3V during active cycle.

27

4.3 SQUASH on the WISP

 IAR Embedded Workbench [24] was used for development and the source code was

written in C. The source code for communicating with the Alien UHF reader [25] and cycle the

microcontroller through the duty cycle was provided by Intel Research Seattle [26] with the

WISP. The microcontroller was programmed with a USB-FET430UIF [27]. The RFID reader

was controlled using the One Wisp GUI which was developed by Intel Research Seattle.

 We evaluated the potential for SQUASH on CRFID by programming the WISP to

compute a thirty-two bit SQUASH output with sixteen guard bits and send the thirty-two bit

output to the UHF reader. To reduce alignment shifts, two copies of the eighty bit NLFSR

suggested in [1] are stored in memory. As mentioned previously, since SQUASH uses a

Mersenne number for the modulus, the resulting hash is some chosen subset of b
2

[k-1 .. 0] (bottom

half) + b
2

[2k-1 .. k] (top half): where b is the k bit sequence generated by the NLFSR. Each time

computation switches between the bottom and top half: the NLFSR position must be adjusted.

We compute the full bottom half before computing the top half to minimize alignment shifts.

Figure 14: WISP power cycle. Charge is gathered during sleep mode and discharged during

computation and communication.

28

Column squaring was used to perform the squaring operation similar to the approach used in

hardware implementation. The general rule for choosing between column and row squaring is

the cost of memory access versus cost of carry propagation. We chose the column method

because we could not efficiently propagate carries in C, but from our results we will show that

row method squaring is the better choice for SQUASH, especially if carries can be handled

efficiently.

Figure 15: WISP Power trace when computing and transmitting SQUASH packet. Blue trace is

voltage and yellow trace denotes computation. WISP distance from reader, from top left to bottom

right: 6", 12", 24", 30".

29

Multiplication and NLFSR shifts were performed in eight bit precision. The WISP does

not have a hardware multiplier, and multiplications are computed using Horner’s method [28].

Computing thirty-two bit output SQUASH with sixteen guard bits requires 468 multiplications,

and each multiplication requires both NLFSRs to shift for a total of 936 shifts. In addition to the

NLFSR shifts during multiplication, 70 shifts are needed to initialize the NLFSRs and 78 shifts

are needed to align the NLFSRs when computation switches from the bottom to the top half. A

total of 468 multiplications and 1084 NLFSR shifts are needed to complete the algorithm.

Figure 16: WISP power traces for static ID. Blue trace is capacitor voltage and yellow trace is

computation of packet (static ID is nearly instant). Distance from reader from top left to bottom

right: 2', 3', 4', 5'

30

 The WISP clock speed was set to 3 Mhz and SQUASH takes approximately 240 ms to

complete. The WISP was programmed to run the full algorithm before switching to low power

mode which reduces the WISPs effective range. Figure 15 shows several WISP power traces

while running SQUASH with successful transmissions up to two feet from the reader; however,

power harvested is inadequate to operate when the distance from the reader exceeds thirty

inches. Figure 16 shows power traces of a WISP programmed to transmit a static ID, which

requires minimal computation. The read range of a static ID is between four and five feet and is

the maximum effective read range of the device.

Table 3: SQUASH and RC5 specs on 3V WISP.

 MEM (bytes) CODE (bytes) Latency (ms)

SQUASH 29 1848 240

RC5 112 1518 9.4

 The first generation WISP is a poor target for SQUASH primarily because it lacks a

hardware multiplier. Table 3 shows the code size and latency of SQUASH and a RC5

implementation on the same device [29]. While RC5 is not a MAC but a block cipher, a MAC

can be constructed using a block cipher [30]; therefore SQUASH is not well suited for the first

generation WISP because a hardware multiplier is essential for fast SQUASH. The latency of

SQUASH on the WISP can be decreased by using the method described in the next section;

however, without a hardware multiplier, SQUASH will still perform poorly.

4.4 Efficient Software SQUASH

From a software standpoint, SQUASH is similar to a multi-precision arithmetic problem.

While it is possible to use successive convolutions to compute SQUASH on a microprocessor,

31

advanced squaring techniques offer a significant advantage. For example, using successive

convolutions requires twice as many multiplications as column or row based squaring. There are

a few factors to consider when choosing a multi-precision algorithm for an embedded

microprocessor. These include the cost of memory access versus the cost of a multiply

operation, the number of available registers, and the availability of an add with carry instruction.

 A0 B0 A0 B0
 A1 B0
 A2 B0 A1 B0
 A3 B0 A0 B1

 A2 B0
 A0 B1 A1 B1
 A1 B1 A0 B2
 A2 B1
 A3 B1 A3 B0
 A2 B1
 A1 B2
 A0 B2 A0 B3
 A1 B2
 A2 B2 A3 B1
 A3 B3 A2 B2
 A1 B3

 A0 B3 A3 B2
 A1 B3 A2 B3
 A2 B3
A3 B3 A3 B3

Figure 17: Row wise (left) and column wise (right) ordering.

The authors in [31] point out that while advanced multiplication techniques, like

Karatsuba Ofman [32], reduce multiplications over column or row methods; they are not well

suited for embedded applications due to their recursive nature. The reason being: recursive

function calls can quickly exhaust the memory allocated for the stack. Column and row methods

are not recursive and better suited for the limited memory of embedded devices. Each method

has its own advantage and can be optimized for squaring. Row based multiplication reduces

memory accesses because the multiplicand is reused, but this comes at a cost of increased

additions due to carry propagation. This method also requires more available registers to be

effective [31]. Column based multiplication requires minimal register space because the product

32

is computed in columns starting with the least significant position; however the cost is increased

memory accesses.

 In SQUASH, the input to the squaring algorithm is not available in memory but must be

generated with an NLFSR. This leads to key considerations when choosing a squaring method:

 NLFSR access is costly

 NLFSR is not random access

The first observation states that in SQUASH, the multiplier and multiplicand need to be

generated by the NLFSR which is computationally expensive. This means that a row based

method is always preferable since it reduces NLFSR shifts. The second observation is that the

NLFSR produces an ordered output; that is, values are produced from left to right or right to left

and all values between the current state and target state must be produced in order to move to the

target state. This means ordering can have a significant impact on performance.

 In an elliptic curve cryptography (ECC) on embedded microprocessors implementation,

[31] proposes a hybrid method when there is insufficient register space which breaks the

computation into columns but performs row wise multiplication within the columns. This is

essentially what SQUASH forces, because the output is some subset of the full result and it can

be computed with the hybrid method described in [31]. However, unlike other arithmetic

operations in which the operands are expected to be in memory, SQUASH’s operands must be

generated on the fly. This means that the column width should be the full SQUASH length even

if there are insufficient registers: because a memory load and store is preferable to NLFSR shifts.

In addition to the reduction in NLFSR shifts from a static multiplier in each row, a further

reduction in NLFSR shifts can be achieved because the NLFSR stores a subset of the

multiplicand.

33

 To see how the ordering of partial products has a big impact on NLFSR shifts, refer to

figure 18. In the column method, each column requires k/2 partial products; but each partial

product requires a NLFSR shift for the multiplier and multiplicand; for a total of k NLFSR shifts

per column (recall k is the bit length of the modulus). The row method is expected to reduce

NLFSR shifts with each row requiring a single shift for the multiplier and l shifts for the

multiplicand (recall l is the combined length of output and guard bits). Notice that any

subsequent rows are only separated by one shift and the total length l is typically shorter than the

NLFSR width. As a result, the entire multiplicand can be contained within the NLFSR state, and

only one shift is needed to move to the next row. This reduces the NLFSR shifts needed for row

method to two shifts per row when NLFSR width is greater than l. If k = 1277, l = 48, and

NLFSRs shift one bit per cycle and alignment shifts are not considered, the column method

requires k * l = 61.3k shifts; on the other hand, the row method requires only 2 * k/2 = 1278

shifts.

Column 3 Column 2 Column 1 Row 3 Row 2 Row 1

i = 0 .. 300

j = 600 ..300

i = 0

j = 647 .. 600

i = 0 .. 300

j = 601 ..300

i = 1

j = 646 .. 599

i = 0 .. 301

j = 602 ..301

i = 2

j = 645 .. 598

Figure 18: First three columns and rows of a partial SQUASH computation.

 The extra reduction in NLFSR shifts outlined above is possible when NLFSR width is

greater than l. If this is not the case, there are two options for the software SQUASH designer.

If there is available memory, a third copy on NLFSR state can be stored which doubles the

length of multiplicand available in memory without NLFSR shifts. The second option is to

34

reduce the column width to the length of the NLFSR. In this case, reducing the width of the

column can be more efficient than the full output length column size. The rows should be

computed from right to left to reduce alignment shifts for the NLFSRs.

4.5 Best Case SQUASH Performance on CRFID

 For our test case, the WISP device was chosen for its unique characteristic of operating

on passive power but it was not an ideal target because it lacked a hardware multiplier. In

addition, we used column squaring instead of the optimal method outlined above which resulted

in high latency. For the ideal case, a hardware multiplier is a must; also, an add with carry

instruction and assembly coding is needed for efficient carry propagation. If these conditions are

met, assuming an eight bit microprocessor with SQUASH parameters k = 1277 and thirty-two bit

output with sixteen guard bits; 468 multiplications, 156 NLFSR shifts during squaring, and 112

NLFSR shifts for initialization and alignment are needed to complete the algorithm. It is clear

that NLFSR shifts will dominate latency since a single shift takes approximately 230 cycles.

Even if a very optimistic five cycles are needed to compute and add the result of each

multiplication, the total clock cycles for additions, multiplications, and NLFSR shifts is

approximately 61k cycles.

 In conclusion, software SQUASH is a good fit for CRFID but requires a hardware

multiplier. In [1], the author claims that SQUASH will benefit from ALUs which may be found

on future RFID tags. We show that despite the larger precision of embedded ALU’s, the

inefficiency of the NLFSR in software prohibits SQUASH from distinguishing itself from

software block ciphers, which could be used in the same way. The algorithm proposed in [1]

35

performs poorly, requiring 2 * k * l NLFSR shifts; but this number can be reduced to k using the

hybrid row method technique described above.

 Software SQUASH may be better suited for RFID than the hardware counterpart. A

more efficient software NLFSR would greatly reduce the latency of software SQUASH, making

SQUASH attractive for CRFID. Latency is critical because we expect many CRFID applications

to be battery powered. In that situation, longer execution time generally means more energy

consumption. SQUASH has a fairly small memory footprint, and if a different NLFSR was

used, SQUASH would be a good choice for CRFID.

36

CHAPTER 5

CONCLUSIONS

5.1 Practical Applications for PSQUASH

 While PSQUASH is larger than most lightweight authentication methods and has

considerably larger latency, it has several strengths over these other methods. The formal proof

of security, a non-probabilistic method, and no random number generation requirement are the

key advantages of PSQUASH. Our synthesized design for 128 bit NLFSR PSQUASH is just

below the 2k GE mark, which is within the area budget for RFID tags. Authentication schemes

that rely on a backend server to minimize tag resources may require significantly lower area, but

the larger area of PSQUASH may be justified in applications where a backend server assisted

approach is not practical. Another consideration is that no additional area needs to be dedicated

to a TRNG, which may otherwise be unnecessary for a tag.

 The area of PSQUASH is within reasonable constraints but a greater limiting factor is the

high latency. Specifically, the supply chain application may not be a good choice for PSQUASH

due to the high latency. Practical applications for SQUASH are those in which latency is not a

critical factor. Examples of such applications may be access cards, some micro payment

systems, and anti-counterfeiting tags. In the case of a supply chain application or inventory

control, a retail shelf or conveyor belt may carry hundreds of tags; and even if these tags can be

authorized concurrently, an automated system may be inefficient when individual responses from

tags require a relatively large delay. The same delay may be considered relatively low in an

access card application where the delay is perceived by a human operator passing an access

37

point. The latency can be significantly reduced by using multi-bit precision, but this increases

area consumption.

 Tags for replacement parts are a good fit for PSQUASH. In the cell phone replacement

battery application described earlier, the cell phone is a networked device capable of accessing a

backend server, but using the limited bandwidth may be undesirable. A stronger case can be

made for devices that are unlikely to have network access. Many products have a business

model that relies heavily on replacement parts. These products could benefit from a PSQUASH

tag. Some examples are automotive replacements parts, replacement parts for consumer

electronics like cameras, and copier and printer toner cartridges. In these applications, a

PSQUASH tag can increase revenue because parts can be authenticated.

5.2 Comparing SQUASH and PSQUASH to Hashes Constructed from Symmetric Ciphers

Adi Shamir points out that hash functions like SHA family owe a large amount of their

complexity to collision resistance; therefore, SQUASH is better suited because collision

resistance is not necessary for a challenge response MAC [1]. In other words, SQUASH is

effective because it is one way; however this is also true of MACs constructed with symmetric

ciphers. In [33] the authors make a case for using AES to construct hash functions for RFID due

to lower area and power consumption over other hash functions including SHA-1, SHA-256,

MD4, and MD5. CMAC can be constructed with symmetric ciphers [30]; furthermore, since the

challenge response MACs do not require collision resistance, any symmetric cipher can be used.

A SHA-256 ASIC design is synthesized in [33] with 10,868 GE and [4] presents an AES

design using 3,595 GE with a latency of 1016 cycles. All the SQUASH designs discussed in this

thesis consume much less area than SHA-256. PSQUASH consumes significantly less area than

38

the AES design, but has a latency that is an order of magnitude higher. While PSQUASH may

be the better choice over AES when area is a primary concern and the additional latency can be

tolerated, the advantage in area disappears when compared to lightweight ciphers like Grain or

PRESENT. Both ciphers are comparable in size to the smallest implementation of PSQUASH

with an eighty bit NLFSR, but have much lower latency. Full round PRESENT is two orders of

magnitude faster than PSQUASH; also serialized PRESENT is an order of magnitude faster than

SQUASH and requires only 1k GE [34].

The same is true for software implementations; however software SQUASH gives up less

latency to software symmetric ciphers. Our work shows how NLFSR shifts can be greatly

reduced over the original method of successive convolutions, but the inefficiency of NLFSR

shifts in software still dominate latency. SQUASH can be a good choice over some steam

ciphers from the eSTREAM project [35], but is still outperformed by a software implementation

of PRESENT [36] and RC5 [29]. In addition, SQUASH requires a hardware multiplier, which is

not typically required by symmetric ciphers. SQUASH may be improved if a faster software

NLFSR is used in place of the proposed NLFSR. Even a marginal reduction in NLFSR

complexity would greatly benefit software SQUASH, since the latency is heavily dominated by

NLFSR shifts.

5.3 Our Contribution

In this thesis, we synthesized the generic SQUASH design proposed in [1] as an ASIC

implementation. We showed that in addition to the large latency of SQUASH, area consumption

is a concern. The SQUASH design proposed in [1] has a large area overhead due to the multiple

copies of state, which are stored to reduce latency. We show that SQUASH can be optimized for

39

squaring if the adder complexity is increased. This optimization reduces latency by eliminating

repetition of reoccurring partial products. We also showed that the third copy of NLFSR state

can be removed with a reordering of partial products. The removal of the third copy of state and

the circuitry to switch values between the auxiliary register and NLFSRs, even with the addition

of a more complex adder, reduces the area consumption of SQUASH.

 The duplicate NLFSR in SQUASH contributes a significant area overhead. In his

SQUASH proposal, Adi Shamir proposes a single NLFSR design but the area consumption of

this design is understated and it is not scalable to a larger modulus. We propose a new variant

called PSQUASH which adds a permutation to the NLFSR output. This permutation allows

PSQUASH to use a simple accumulator and single NLFSR to compute m
2
 mod n. The proposed

change does not destroy non-linearity of the NLFSR and allows us to use the formal proof of

security of SQUASH. The smallest PSQUASH configuration is synthesized with 1624 GE

which is within the security budget of RFID tags. Although we significantly reduce the area and

latency of SQUASH with our PSQUASH variant, the area consumption is slightly more than

some notable symmetric ciphers; moreover, the latency of PSQUASH is much higher.

 Adi Shamir suggests SQUASH is well positioned to take advantage of next generation

RFID tags which may have ALUs because SQUASH is scalable to arbitrary word width. We

tested SQUASH on a prototype CRFID. Our results show that while SQUASH benefits from

ALUs in embedded microprocessors, the cost of NLFSR shifts in software negate the benefit of

increased word width. A method to choose the optimal partial product ordering is introduced

which greatly reduces NLFSR shifts. This reordering of partial products makes SQUASH

comparable to software implementation of symmetric ciphers; however a software friendly

NLFSR is needed for faster SQUASH on CRFID.

40

 SQUASH is a novel idea but the large squaring operation leads to a large latency, and for

this reason, it is unlikely to be deployed in many RFID applications. New lightweight symmetric

ciphers have significantly lower latency, while consuming slightly less area: making them a

better choice for constructing a challenge response MAC. These ciphers are relatively new, and

have not been extensively studied as Rabin’s cryptosystem, but they have received significant

peer review. Still SQUASH has a potential to be used in RFID systems and its use has been

proposed in [37, 38, 39]. For potential SQUASH applications, our contributions offer a

significant reduction in area and/or latency.

41

BIBLIOGRAPHY

[1] Adi Shamir. SQUASH – A New MAC with Provable Security Properties for Highly

Constrained Devices Such as RFID Tags. FSE 2008, LNCS 5086, pp. 144–157, 2008.

[2] EPCGlobal http://www.epcglobalinc.org/

[3] RFID Journal, November 2003.

[4] Martin Feldhofer, Sandra Dominikus and Johannes Wolkerstorfer, Strong Authentication

for RFID Systems Using the AES Algorithm, Proc. Workshop on Cryptographic Hardware

and Embedded Systems - CHES 2004, Cambridge (Boston), Ma.,USA, Springer, vol. 3156,

August 2004, pp. 357-370.

[5] Thomas Eisenbarth, Sandeep Kumar, Christof Paar, Axel Poschmann and Leif Uhsadel,

A Survey of Lightweight-Cryptography Implementations, IEEE Design & Test of

Computers, vol. 24, no. 6, November 2007, pp. 522-533.

[6] A. Bogdanov et al., PRESENT: An Ultra-Lightweight Block Cipher, Proc. Workshop

Cryptographic Hardware and Embedded Systems (CHES 07), LNCS 4727, Springer, 2007,

pp. 450-466.

[7] eSTREAM project http://www.ecrypt.eu.org/stream/

[8] Hopper, N.J., Blum, M.: A Secure Human-Computer Authentication Scheme, CMU-CS-

00-139 (2000)

[9] Juels, A., Weis, S.A.: Authenticating Pervasive Devices with Human Protocols. In Shoup,

V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 293–308. Springer, Heidelberg (2005)

[10] Bringer, J., Chabanne, H., Dottax, E.: HB++: a Lightweight Authentication Protocol

Secure Against Some Attacks. In: Workshop on Security, Privacy and Trust in pervasive and

Ubiquitous Computing - SecPerU (2006)

[11] Munilla, J., Peinado, A.: HB-MP: A further step in the HB-family of lightweight

authentication protocols. Computer Networks 51, 2262–2267 (2007)

[12] Tassos Dimitriou. A lightweight RFID protocol to protect against traceability and

cloning attacks. IEEE SECURECOMM, 2005.

[13] Tassos Dimitriou. A secure and efficient RFID protocol that can make big brother

obsolete. International Conference on Pervasive Computing and Communications, PerCom,

2006.

http://www.epcglobalinc.org/
http://www.ecrypt.eu.org/stream/

42

[14] Chatmon, C., Le, T.v., and Burmester, M. (2006). Secure anonymous RFID

authentication protocols. Technical Report TR-060112, Florida State University, Department

of Computer Science, Tallahassee, Florida, USA, 2006.

[15] Francois Gosset, et al. FPGA Implementation of SQUASH. Twenty-ninth Symposium

on Information Theory in the Benelux, May 2008.

[16] Rabin, M.O.: Digitalized Signatures and Public-Key Functions as Intractable as

Factorization, MIT LCS/TR-212 (1979)

[17] K. Ouafi and S. Vaudenay. Smashing SQUASH-0. EUROCRYPT 09, volume 5479 of

LNCS, pages 300-312. Springer, 2009.

[18] Hell, M., Johansson, T., Maximov, A., Meier, W. A Stream Cipher Proposal: Grain-128,

http://www.it.lth.se/martin/Grain128.pdf

[19] P.G. Comba, Exponentiation on the IBM PC, IBM Systems Journal, vol. 29, no.4, pp.

526-538, 1990.

[20] Faraday UMC Free Library http://freelibrary.faraday-tech.com/

[21] OpenCores http://www.opencores.org/

 [22] Benjamin Ransford, Shane Clark, Mastooreh Salajegheh, Kevin Fu, “Getting Things

Done on Computational RFIDs with Energy-Aware Checkpointing and Voltage-Aware

Scheduling.” In Proceedings of USENIX Workshop on Power Aware Computing and Systems

(HotPower), December 2008.

[23] J. R. Smith, A. P. Sample, P. S. Powledge, S. Roy, and A. Mamishev. “A wirelessly-

powered platform for sensing and computation." In 8th International Conference on

Ubiquitous Computing (Ubicomp 2006), pages 495–506, Orange Country, CA, USA,

September 2006.

[24] IAR Embedded Workbench http://www.iar.com/ew, 2009.

[25] Alien UHF RFID readers http://www.alientechnology.com/readers/index.php

[26] Intel Research Seattle http://seattle.intel-research.net/

[27] MSP-FET430UIF http://focus.ti.com/docs/toolsw/folders/print/msp-fet430uif.html

 [28] William George Horner. “A new method of solving numerical equations of all orders,

by continuous approximation.” In Philosophical Transactions of the Royal Society of

London, pp. 308–335, July 1819

http://www.it.lth.se/martin/Grain128.pdf
http://freelibrary.faraday-tech.com/
http://www.opencores.org/
http://www.alientechnology.com/readers/index.php
http://seattle.intel-research.net/
http://focus.ti.com/docs/toolsw/folders/print/msp-fet430uif.html

43

[29] H.-J. Chae, D. J. Yeager, J. R. Smith, and K. Fu. Maximalist cryptography and

computation on the WISP UHF RFID tag. In Proceedings of the Conference on RFID

Security, July 2007.

[30] Morris Dworkin, Recommendation for Block Cipher Modes of Operation: The CMAC

Mode for Authentication. NIST Special Publication

http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf

[31] N. Gura, A. Patel, A. Wander, H. Eberle, and S. C. Shantz, “Comparing Elliptic Curve

Cryptography and RSA on 8-bit CPUs.” Boston, Massachusetts: 6th International Workshop

on Cryptographic Hardware and Embedded Systems, August 2004.

[32] A. Karatsuba and Y. Ofman. Multiplication of Many-Digital Numbers by Automatic

Computers. Doklady Akad. Nauk, (145):293{294, 1963. Translation in Physics-Doklady 7,

595-596.

[33] M. Feldhofer, C. Rechberger. A Case against Currently used Hash Functions in RFID

Protocols. In On the Move to Meaningful Internet Systems 2006: OTM’06 Workshops,

including the First International Workshop on Information Security (IS’06), Montpelier,

France, Lecture Notes in Computer Science 4277, pp. 372–381, Springer-Verlag, 2006.

[34] Rolfes, C., Poschmann, A., Paar, C.: Security for 1000 Gate Equivalents. In: Secure

Component and System Identification (SECSI) 2008 (2008)

[35] Meiser, G., Eisenbarth, T., Lemke-Rust, K., Paar, C.: Efficient implementation of

estream ciphers on 8-bit avr microcontrollers. In Industrial Embedded systems, 2008. SIES

2008, pp. 58–66 (2008)

[36] M. Vogt, A. Poschmann, and C. Paar, “Cryptography is Feasible on 4-Bit

Microcontrollers - A Proof of Concept”, 2009 IEEE International Conference on RFID, pp.

241-248, 2009.

[37] Mastooreh Salajegheh, Shane Clark, Benjamin Ransford, Kevin Fu, and Ari Juels,

CCCP: Secure Remote Storage for Computational RFIDs. In Proc. of the 18th USENIX

Security Symposium, 2009

[38] Mohammad Shahriar Rahman, Masakazu Soshi, and Atsuko Miyaji, A Secure RFID

Authentication Protocol with Low Communication Cost. International Conference on

Complex, Intelligent and Software Intensive Systems, 2009.

[39] J. Wu and D. Stinson. How to Improve Security and Reduce Hardware Demands of the

WIPR RFID Protocol. In IEEE International Conference on RFID. RFID 2009, Orlando,

Florida, USA, April 2009.

http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf

